• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

R语言主成分分析(PCA)

原作者: [db:作者] 来自: [db:来源] 收藏 邀请
数据的导入

> data=read.csv(\'F:/R语言工作空间/pca/data.csv\') #数据的导入
>
> ls(data) #ls()函数列出所有变量
[1] "X" "不良贷款率" "存贷款比率" "存款增长率" "贷款增长率" "流动比率" "收入利润率"
[8] "资本充足率" "资本利润率" "资产利润率"
> dim(data) # 维度
[1] 15 10


一.数据标准化

> std_data=scale(data[2:10])  #数据标准化
> 
> rownames(std_data)=data[[1]]  #数组各行名字定义为数据文件的的第一列
> 
> class(std_data)   #查看数据类型
[1] "matrix"
> df=as.data.frame(std_data)   #转化为数据框
> class(df)
[1] "data.frame"

习惯数据框格式

数据标准化

> std_data=scale(data[2:10])  #数据标准化
> 
> rownames(std_data)=data[[1]]  #数组各行名字定义为数据文件的的第一列
> 
> class(std_data)   #查看数据类型
[1] "matrix"
> df=as.data.frame(std_data)   #转化为数据框
> class(df)
[1] "data.frame"

  

二.主成分分析结果

> df.pr=princomp(df,cor=TRUE) #主成分分析 
> summary(df.pr,loadings=TRUE)  #列出结果 包含特征向量
Importance of components: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Standard deviation 1.8895 1.3087 1.2365 0.9593 0.86553 0.46727 0.4168 0.293547 0.201641 Proportion of Variance 0.3967 0.1903 0.1699 0.1023 0.08324 0.02426 0.0193 0.009574 0.004518 Cumulative Proportion 0.3967 0.5870 0.7569 0.8591 0.94235 0.96661 0.9859 0.995482 1.000000 Loadings: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 不良贷款率 0.425 0.188 0.288 0.423 0.173 0.695 资本充足率 -0.359 -0.521 0.234 0.546 0.127 -0.214 -0.426 存贷款比率 0.301 0.532 -0.142 -0.370 -0.324 0.248 -0.320 -0.438 流动比率 -0.192 0.429 -0.416 0.439 0.306 -0.384 -0.113 0.399 资产利润率 -0.392 0.332 -0.438 -0.178 0.452 0.494 0.238 资本利润率 -0.413 -0.185 0.259 -0.103 0.428 -0.562 0.167 -0.436 收入利润率 -0.299 -0.455 -0.116 0.299 -0.481 -0.159 0.432 -0.329 0.221 存款增长率 -0.243 0.249 0.387 0.636 -0.282 0.171 0.336 -0.309 贷款增长率 -0.300 0.342 0.518 -0.127 0.101 0.214 -0.620 0.260

  结果比较杂乱,接下来确定主成分个数

三.确定主因子个数

根据累计贡献率大于90%,确定

计算相关系数矩阵

> cor(df)  #相关系数矩阵
           不良贷款率 资本充足率 存贷款比率 流动比率 资产利润率 资本利润率 收入利润率 存款增长率
不良贷款率     1.0000   -0.57238    0.31761 -0.20055   -0.70121   -0.45662   -0.53825   -0.16790
资本充足率    -0.5724    1.00000   -0.33566  0.61749    0.51053    0.32931    0.37424    0.01208
存贷款比率     0.3176   -0.33566    1.00000  0.16576   -0.02387   -0.72464   -0.56974   -0.11599
流动比率      -0.2005    0.61749    0.16576  1.00000    0.31280    0.07588   -0.03629    0.27787
资产利润率    -0.7012    0.51053   -0.02387  0.31280    1.00000    0.44019    0.13002    0.24387
资本利润率    -0.4566    0.32931   -0.72464  0.07588    0.44019    1.00000    0.38484    0.26496
收入利润率    -0.5383    0.37424   -0.56974 -0.03629    0.13002    0.38484    1.00000    0.24963
存款增长率    -0.1679    0.01208   -0.11599  0.27787    0.24387    0.26496    0.24963    1.00000
贷款增长率    -0.2863    0.03398   -0.14413  0.08791    0.59245    0.55095   -0.09947    0.60455
           贷款增长率
不良贷款率   -0.28628
资本充足率    0.03398
存贷款比率   -0.14413
流动比率      0.08791
资产利润率    0.59245
资本利润率    0.55095
收入利润率   -0.09947
存款增长率    0.60455
贷款增长率    1.00000

 求特征值和特征向量

>y=eigen(cor(df)) #求出cor(df)的特征值和特征向量
> y$values#输出特征值
[1] 3.57008 1.71263 1.52895 0.92033 0.74914 0.21834 0.17370 0.08617 0.04066

 输出前五个累计贡献率 

> sum(y$values[1:5])/sum(y$values)   #求前5个主成分的累计方差贡献率
[1] 0.9423
> 

 

输出前5个主成分的载荷矩阵
> df.pr$loadings[,1:5]#输出前5个主成分的载荷矩阵
            Comp.1   Comp.2   Comp.3   Comp.4  Comp.5
不良贷款率  0.4245  0.03196  0.18753  0.28824  0.4226
资本充足率 -0.3595  0.02955 -0.52091  0.04673  0.2341
存贷款比率  0.3013  0.53170 -0.14155 -0.09645 -0.3697
流动比率   -0.1923  0.42903 -0.41595  0.43880  0.3061
资产利润率 -0.3916  0.33239 -0.04543 -0.43786 -0.1780
资本利润率 -0.4134 -0.18527  0.25918 -0.10322  0.4280
收入利润率 -0.2990 -0.45539 -0.11566  0.29949 -0.4810
存款增长率 -0.2432  0.24926  0.38706  0.63621 -0.2824
贷款增长率 -0.3000  0.34207  0.51768 -0.12671  0.1011

  画出碎石图

screeplot(df.pr,type=\'lines\')  #画出碎石图

  

 

画出散点图

 

biplot(df.pr)     #画出主成分散点图

  

 

 

四.获取相关系数矩阵的特征值和特征向量

> y=eigen(cor(df)) #求出cor(df)的特征值和特征向量
> y$values#输出特征值
[1] 3.57008 1.71263 1.52895 0.92033 0.74914 0.21834 0.17370 0.08617 0.04066

  

五.计算主成分总得分

.

> s=df.pr$scores[,1:5]#输出前5个主成分的得分
> #s[,1]
> #计算综合得分
> 
> scores=0.0
> for (i in 1:5)
   scores=(y$values[i]*s[,i])/(sum(y$values[1:5]))+scores
> 
> 
> cbind(s,scores)#输出综合得分信息
                          Comp.1  Comp.2    Comp.3   Comp.4  Comp.5   scores
北京农商银行             -0.9927 -0.4565 -0.773341  0.72371  0.5357 -0.52362
上海农商银行              0.5461 -0.4069  0.228600 -0.05691 -1.1411  0.08196
广州农商银行             -1.7680 -0.5058  0.091704  0.46582  0.4301 -0.74130
天津农商银行              0.8670 -1.0680 -0.118665 -1.13960 -0.2242 -0.01556
(宁波)慈溪农村商业银行 -0.9713  2.0909 -2.590721  0.44416  0.7692 -0.33751
江阴农商银行              0.6533  0.3486 -1.678249  0.47363 -0.4051  0.05848
成都农商银行             -2.5372 -3.2477  0.008494  0.24227  1.2955 -1.58158
重庆农村商业银行         -1.0099 -0.1061  1.753280  0.23145 -0.6871 -0.16602
(宁夏)黄河农村商业银行 -0.5903  0.7269  1.227349  0.59878 -1.1312  0.08463
(陕西)旬阳农村商业银行  0.1928  1.7666 -0.273642 -1.29087  0.7258  0.31262
太仓农村商业银行          3.1937 -1.4905 -1.089861 -1.17931 -0.6266  0.66358
武汉农村商业银行         -0.8349  0.1686 -0.119553 -1.63283 -0.4856 -0.55902
安徽合肥科技农商银行     -0.2713  0.3084 -0.273867  1.79049 -1.2170 -0.01448
福州农商银行             -1.5557  1.6844  2.185117 -0.80662  0.7243  0.05566
沈阳农商银行              5.0781  0.1871  1.423354  1.13584  1.4374  2.68217

  

 


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
R语言缺失值信息处理发布时间:2022-07-18
下一篇:
R语言入门(1)-初识R语言发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap