最近编写了Fisher判别的相关代码时,需要与已有软件比照结果以确定自己代码的正确性,于是找到了安装方便且免费的R。这里把R中进行Fisher判别的方法记录下来。
1. 判别分析与Fisher判别
不严谨但是通俗的说法,判别分析(Discriminant Analysis)是一种多元(多个变量)统计分析方法,它根据样本的多个已知变量的值对样本进行分类的方法。一般来说,判别分析由两个阶段构成——学习(训练)和判别。在学习阶段,给定一批已经被分类好的样本,根据它们的分类情况和样本的多个变量的值来学习(训练)得到一种判别方法;在判别阶段用前一阶段得到的判别方法对其他样本进行判别。
Fisher判别(Fisher Discrimination Method)又被称为线性判别(LDA,Linear Discriminative Analysis),是判别分析的一种,历史可以追溯到1936年。它的核心思想是将多维数据(多个变量)投影(使用线性运算)到一维(单一变量)上,然后通过给定阈值将样本根据投影后的单一变量进行分类。
Fisher判别的学习(训练)阶段,就是找到合适的投影方式,使得对于已经被分类好的样本,同一类的样本被投影后尽量扎堆。具体的方法有一点点儿繁琐,有兴趣可以参考这里。学习阶段的结果是找到一系列的系数(Coeffcient),构成形如
y=a1 * x1 + a2 * x2 + a3 * x3 + ... + an * xn
其中:a1,a2,... an是系数,x1,x2,... ,xn是变量值。
的判别式和阈值。而判别阶段可以根据这个判别式计算出y,并根据阈值将样本进行分类。
2. 在R中使用Fisher判别
R中使用Fisher判别说起来很简单,但是我当初也放狗搜索了不短的时间才搞明白如何使用。
首先,它在R里不叫Fisher,用Fisher搜索多半误入歧途。在R中,它叫LDA(Linear Discriminative Analysis)。
其次,它存在于一个叫MASS的包里。在Ubuntu 13.10中使用:
sudo apt-get install r-base
这样安装以后默认就有,然后使用下面语句引用这个包:
> library(MASS)
再次,引用了MASS包以后就可以使用lda命令了:
> params <- lda(y~x1+x2+x3, data=d)
其中,第一个参数是判别式的形式,第二个参数是用来训练的样本数据。lda命令执行后,会输出构成判别式的各个系数。
最后,使用predict命令对未分类的样本进行判别。
> predict(params, newdata)
其中,第一个参数是上一阶段lda命令的结果,第二个参数是用来分类的样本数据。自此,整个fisher判别过程完成。
3. 实例
3.1 数据
准备好两个csv文件,用来训练的已分类数据叫learn.csv,用来判别的未分类数据叫infer.csv。learn.csv共有六列构成,其第一行分别为Band1,Band2,Band3,Band4, Band5, Class,分别代表变量1、变量2、变量3和类别。infer.csv由六列构成:Band1, Band2, Band3, Band4, Band5。同样第一列包含列名。csv文件的字段间都用逗号分隔。
3.2 操作步骤
1. 读取learn.csv
> d <- read.csv("~/data/learn.csv")
> d2 <- read.csv("~/data/infer.csv")
2. 训练
> lda(Class ~ Band1+Band2+Band3+Band4+Band5, data=d)
训练结果:
> params Call: lda(Class ~ Band1 + Band2 + Band3 + Band4 + Band5, data = data) Prior probabilities of groups: 0 1 0.4220068 0.5779932 Group means: Band1 Band2 Band3 Band4 Band5 0 318.3189 0.0000000 0.0000000 0.00000 0.00000 1 322.1881 -0.7703634 -0.2642972 33.92608 36.39715 Coefficients of linear discriminants: LD1 Band1 0.02173212 Band2 -0.08647688 Band3 -0.01199366 Band4 0.10619769 Band5 0.10560976
3. 判别
> ret <- predict(params, d2)
输出结果:
> write.csv(d2, file="~/data/output.csv"
打完收工!
请发表评论