• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

《时间序列分析及应用.R语言》第十一章阅读笔记

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

11.1干预分析

 

 

library(TSA)
win.graph(width = 4.875,height = 2.5,pointsize = 8)
data(airmiles)
plot(log(airmiles),ylab = 'log(airmiles',xlab = 'year')

#美国航空的每月客运里程:1996年1月~2005年5月

as.vector(diff(diff(window(log(airmiles),end = c(2001,8)),12))),lag.max = 48)

#干预期(1-B)(1-B12)log(航空客运里程)的样本ACF  

air.ma1 <- arimax(log(airmiles),order = c(0,1,1),
                  seasonal = list(order = c(0,1,1),period = 12
                  ),xtransf = data.frame(I911 = 1*(seq(airmiles)==69),
                  I911 = 1*(seq(airmiles)==69)),
                  transfer = list(c(0,0),c(1,0)),xreg = data.frame(
                Dec96 = 1*(seq(airmiles)==12),
                  Jan97 = 1*(seq(airmiles)==13),Dec02 = 1*(seq(airmiles)==84)),
                  method = 'ML')
air.ma1

  #对数化航空客运里程的干预模型的估计

 

 

plot(log(airmiles),ylab = 'Log(airmiles)')
points(fitted(air.ma1))

  #对数化的航空客运里程与拟合值

Nine11p <- 1*(seq(airmiles)==69)
plot(ts(Nine11p*(-0.0949)+filter(Nine11p,filter = 0.8139,method = 'recursive',side = 1)
        *(-0.2715),frequency = 12,start = 1996),ylab = '9/11',type = 'h')
abline(h = 0)

  #9.11事件对航空客运量序列所造成影响的估计

11.2异常值

  指的是一些不规则的观测值,其出现可能源自测量误差与复制误差其中之一,或者两者都有可能,也可能源于基础过程发生了短期性变化。

  对于时间序列来说可识别的异常值有两种,可加异常值与新息异常值,简记为AO/IO.

  

 


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
R语言通过loess去除某个变量对数据的影响发布时间:2022-07-18
下一篇:
R语言:recommenderlab包的总结与应用案例发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap