一、初学入门: 《R in Action》 《The Art of_R Programming》 入门者可首选两本,前者从统计角度入手,分高中低三部分由浅入深的讲解了如何用R来实现统计分析,另外此书已经有中文版面世。后者从程序编写的角度入手,对R的本身特点进行了清晰的介绍。中文版应该快有了。
二、统计进阶: 《A Handbook of Statistical Analyses_Using_R》 《Modern Applied Statistics With S》 这两本书基本上涵盖了统计的一些高阶内容,例如多元分析、多层回归模型、荟萃分析、生存分析等内容。案例丰富,公式不多,值得反复学习参考。
三、科学计算: 《Introduction to Scientific Programming and Simulation Using R》 除了统计分析外,此书独特之处在于使用R来做数值分析,如求根,最优化,数值积分。还包括了一些常见的模拟技术。书后的习题和最后的案例非常有用。该书的中文版据说还在翻译。
四、数据挖掘: 《Data Mining with R_ Learning with Case Studies》 《Machine Learning for Hackers》 两本侧重于数据挖掘的R书,全是以案例为线索,示范的代码量很大。跟一遍下来会有很大的收获。
五、数据绘图: 《ggplot2 Elegant Graphics for Data Analysis》 ggplot2还有什么好说的呢,R中最优秀的绘图包,但由于近期该包升级很快,这书显得有些过时。好在中文版进行了大幅更新,即将面世。
六、参考手册: 《R Cookbook》 《R in a Nutshell》 有时候我们需要类似词典的案头参考手册,以方便随时查阅。又或者可以通读一遍以查漏补缺。上面两本书虽然有些厚度,但仍然推荐之。后者的中文版也在翻译状态。
七、高级编程: 《R Programming for Bioinformatics》 《software for data analysis programming with R》 如果你是初学者,不要去看上面两本书。如果你想进阶为专家级R用户,那你需要精读它们。前者讲解了R少为人知的一面,例如字符处理、正则表达和XML,还有报错处理以及与其它语言的交互。后者更是编写生产级代码的圣经指南。
|
请发表评论