原文标题:Understanding Rust Lifetimes
原文链接:https://medium.com/nearprotocol/understanding-rust-lifetimes-e813bcd405fa
公众号: Rust 碎碎念
翻译 by: Praying
从 C++来到 Rust 并需要学习生命周期,非常类似于从 Java 来到 C++并需要学习指针。起初,它看起来是一个不必要的概念,是编译器应该处理好的东西。后来,当你意识到它赋予你更多的力量——在 Rust 中,它带来了更多的安全性和更好的优化--你感到兴奋,想掌握它,但却失败了,因为它并不直观,很难找到形式化的规则。可以说,C++指针比 Rust 生命周期更容易沉浸其中,因为 C++指针在代码中随处可见,而 Rust 生命周期通常隐藏在大量的语法糖背后。所以你最终会在语法糖不适用的时候接触生命周期,这通常是一些复杂的情况。当你面临的只有这些复杂情况时,你很难内化这个概念。
引言
对于生命周期,需要记住的第一件事就是,它们全都是关于引用(references)的,与其他东西无关。例如,当我们看到一个带有生命周期(lifetime)类型参数的结构体时,它指的是这个结构体所拥有的引用的生命周期,再无其他。不存在结构体的生命周期或者闭包的生命周期,只有结构体或闭包内部引用的生命周期。因此,我们对生命周期的讨论会不可避免地涉及到 Rust 引用。
生命周期背后的动机
要理解生命周期,我们首先需要理解其背后的动机,这就要求我们先理解借用规则背后的动机。借用规则中指出:
在代码中,存在对重叠内存的引用,也称为别名(aliasing),它们中至少有一个会变更(mutate)内存中的内容。
同时变更是不允许的,因为这样是不安全的,并且它阻碍编译器进行各种优化。
示例
假定我们现在想要写一个函数,该函数将一个坐标沿着 x 轴在给定方向上移动两倍的距离。
struct Coords {
pub x: i64,
pub y: i64,
}
fn shift_x_twice(coords: &mut Coords, delta: &i64) {
coords.x += *delta;
coords.x += *delta;
}
fn main() {
let mut a = Coords{x: 10, y: 10};
let delta_a = 10;
shift_x_twice(&mut a, &delta_a); // All good.
let mut b = Coords{x: 10, y: 10};
let delta_b = &b.x;
// shift_x_twice(&mut b, delta_b); // Compilation failure.
}
最后一条语句会把坐标移动三倍距离而不是两倍,这可能会在生产系统中引发各种 bug。关键问题在于,delta_b
和&mut b
指向一块重叠的内存,而这在 Rust 中是被生命周期和借用规则所阻止的。尤其是,Rust 编译器会提醒,delta_b
要求持有一个b
的不可变引用直到main()
结束,但是在那个作用域内,我们还试图创建一个b
的可变引用,这是被禁止的。
为了能够进行借用规则检查,编译器需要知道所有引用的生命周期。在很多情况下,编译器能够自己推导出生命周期,但是有些情况它无法完成,这就需要开发者手动的对生命周期进行标注。此外,编译器还给开发者提供了工具,例如,我们可以要求所有实现了某个特定 trait 的结构体,其所有引用至少在给定的时间段内都是有效的。
对比 Rust 的引用和 C++中的引用,在 C++中,我们也可以有常量(const)和非常量(non-const)引用,类似于 Rust 中的&x
和&mut x
。但是,C++中没有生命周期。常量引用(const reference)能够帮助 C++编译器进行优化,但是它们不能给出完整的安全性保证。所以,上面的示例如果用 C++来写是可以编译通过的。
脱糖(Desugaring)
在我们深入理解生命周期之前,我们需要弄清生命周期是什么,因为各种 Rust 文档用生命周期这个词既指代作用域(scope)也指代类型参数(type-parameter)。在这里,我们用生命周期(lifetime ) 表示一个作用域,用生命周期参数(lifetime-parameter ) 来表示一个参数,编译器会用一个真正的生命周期来替换这个参数,就像它在推导泛型时那样。
示例
为了让解释更加清晰,我们将会对一些 Rust 代码进行脱糖(译注:指脱去语法糖)。考虑下面的代码:
fn announce(value: &impl Display) {
println!("Behold! {}!", value);
}
fn main() {
let num = 42;
let num_ref = #
announce(num_ref);
}
下面是脱糖的版本:
fn announce<'a, T>(value: &'a T) where T: Display {
println!("Behold! {}!", value);
}
fn main() {
'x: {
let num = 42;
'y: {
let num_ref = &'y num;
'z: {
announce(num_ref);
}
}
}
}
后面脱糖的代码使用生命周期参数'a
和生命周期/作用域'x
,'y
进行了显式的标注。
我们还使用impl Display
来比较生命周期参数和一般的类型参数。注意这里语法糖是如何把生命周期参数'a
和类型参数T
都隐藏起来的。注意,作用域并不是 Rust 语法的一部分,我们只是用它来标注,所以脱糖后的代码是无法编译的。而且,在这个以及后面的示例中,我们忽略了在 Rust 2018 中加入的非词法生命周期(non-lexical lifetimes)以简化我们的解释。
子类型
从技术角度看,生命周期不是一个类型,因为我们无法像u64
或者Vec<T>
这样的普通的类型一样构建一个生命周期的实例。然而,当我们对函数或结构进行参数化时,生命周期参数就像类型参数一样被使用,请看上面的announce
示例。另外,我们后面会看到的变型规则(Variance Rule)也会像使用类型一样使用生命周期,所以我们在本文中也会称之为类型。
比较生命周期和普通类型、生命周期参数和普通类型参数是有用的:
当编译器为一个普通类型参数推导类型时,如果有多个类型可以满足类型参数,编译器就会报错。而在生命周期的情况下,如果有多个生命周期可以满足给定的生命周期参数,编译器将会使用最小的那个生命周期。
请发表评论