• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

【R/Matlab】PCA(主成分分析)

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

data = read.table("file", header=TRUE)

R commands for PCA

Here are some R commands for PCA

pcdat = princomp(data) - It does actual job and put the results to pcdat. It will use covariance matrix

pcdat = princomp(data,cor=TRUE) - It will use correlation matrix

summary(pcdat) - It will print standard deviation and proportion of variances for each component

screeplot(pcdat) - It will plot screeplt

biplot(pcdat) or biplot.princomp(pcdat,scale=1) - It will give you biplot

loadings(pcdat) - it will give information how much each variable contribute to each component. For principal components you can ignore

loading subsection of the output from this command

pcdat$scores - It will plot scores of each observation for each variable

For further details about this and other R commands type

help.start()

 

PCA百科地址(附Matlab例子)http://baike.baidu.com/view/852194.htm#1


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap