1.打开CFTOOL工具箱。在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。
2.输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:
x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];
y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353; 0.019278; 0.041803; 0.038026; 0.038128; 0.088196];
例如在命令行里输入下列数据:
x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];
y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353; 0.019278; 0.041803; 0.038026; 0.038128; 0.088196];
3.数据的选取。打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。关闭Data对话框。此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
4.曲线拟合(幂函数power)。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor。在Fit Editor里面点击New Fit按钮,此时其下方的各个选框被激活,在Data Set选框中选中刚才建立的x-y数据组,然后在Type of fit选框中选取拟合或回归类型,各个类型的拟合或回归相应的分别是:
Custom Equations 用户自定义函数
Expotential e指数函数
Fourier 傅立叶函数,含有三角函数
Gaussian 正态分布函数,高斯函数
Interpolant 插值函数,含有线性函数,移动平均等类型的拟合
Polynomial 多项式函数
Power 幂函数
Rational 有理函数(不太清楚,没有怎么用过)
Smooth Spline ??(光滑插值或者光滑拟合,不太清楚)
Sum of sin functions正弦函数类
Weibull 威布尔函数(没用过)
Custom Equations 用户自定义函数
Expotential e指数函数
Fourier 傅立叶函数,含有三角函数
Gaussian 正态分布函数,高斯函数
Interpolant 插值函数,含有线性函数,移动平均等类型的拟合
Polynomial 多项式函数
Power 幂函数
Rational 有理函数(不太清楚,没有怎么用过)
Smooth Spline ??(光滑插值或者光滑拟合,不太清楚)
Sum of sin functions正弦函数类
Weibull 威布尔函数(没用过)
在这个Type of fit选框中选择好合适的类型,并选好合适的函数形式。于是点击Apply按钮,就开始进行拟合或者回归了。此时在Curve Fitting Tool窗口上就会出现一个拟合的曲线。这就是所要的结果。
在上面的例子中,选择sum of sin functions中的第一个函数形式,点击Apply按钮,就可以看见拟合得到的正弦曲线。
在上面的例子中,选择sum of sin functions中的第一个函数形式,点击Apply按钮,就可以看见拟合得到的正弦曲线。
5.拟合后的结果信息。在Fitting对话框中的Results文本框中显示有此次拟合的主要统计信息,主要有
General model of sin1:
....... (函数形式)
Coefficients (with 95% conffidence range) (95%致信区间内的拟合常数)
a1=... ( ... ...) (等号后面是平均值,括号里是范围)
....
Godness of fit: (统计结果)
SSE: ... (方差)
R-squared: ... (决定系数,不知道做什么的)
Adjusted R-squared: ... (校正后的决定系数,如何校正的不得而知)
RMSE: ... (标准差)
上面的例子中经过拟合得到的函数最后为
y=3.133*x^(-1.007)-0.004233
General model of sin1:
....... (函数形式)
Coefficients (with 95% conffidence range) (95%致信区间内的拟合常数)
a1=... ( ... ...) (等号后面是平均值,括号里是范围)
....
Godness of fit: (统计结果)
SSE: ... (方差)
R-squared: ... (决定系数,不知道做什么的)
Adjusted R-squared: ... (校正后的决定系数,如何校正的不得而知)
RMSE: ... (标准差)
上面的例子中经过拟合得到的函数最后为
y=3.133*x^(-1.007)-0.004233
6.拟合分析(Analysis)。
7.图片导出。另外要说的是,如果想把这个拟合的图像导出的话,在Curve Fitting Tool窗口的File菜单下选Print to Figure,此时弹出一个新的图像窗口,里面是你要导出的图像,在这个figure窗口的File菜单里再选Export,选择好合适的格式,一般是jpeg,选择好路径,点击OK就可以了。出来的图像可以在Word等编辑环境中使用,就不多说了。
要修改图像的性质,如数据点的大小、颜色等等的,只需要在对象上点右键,就差不多可以找到了。
要修改图像的性质,如数据点的大小、颜色等等的,只需要在对象上点右键,就差不多可以找到了。
请发表评论