堆排序
堆是一个数组,可以看成一颗二叉树
struct Heap(Vec<i32>);
impl Heap {
//父节点索引
fn parent(i: usize) -> usize {
i / 2
}
//左子节点索引
fn left(i: usize) -> usize {
2 * i
}
//右子节点索引
fn right(i: usize) -> usize {
2 * i + 1
}
}
首先要能维护最大堆(排序通常用最大堆)
思路就是找出该节点和两个子节点的最大节点
如果该节点为最大,则结束,否则,先交换,然后继续判断子节点
递归实现起来更简单
具体实现如下
impl Heap {
fn heap_size(&self) -> usize {
self.0.len()
}
fn max_heapify(&mut self, mut i: usize) {
loop {
let l = Heap::left(i);
let r = Heap::right(i);
let mut largest;
if l <= self.heap_size() && self.0[l - 1] > self.0[i - 1] {
largest = l;
} else {
largest = i;
}
if r <= self.heap_size() && self.0[r - 1] > self.0[largest - 1] {
largest = r;
}
if largest == i {
break;
} else {
let tmp = self.0[i - 1];
self.0[i - 1] = self.0[largest - 1];
self.0[largest - 1] = tmp;
}
i = largest;
}
}
}
构建最大堆
依次对每个节点都进行维护即可构建最大堆
impl Heap {
fn build_max_heap(&mut self) {
for i in (1..self.heap_size() + 1).rev() {
self.max_heapify(i);
}
}
}
堆排序
- 先构建一个最大堆
- 交换第一个和最后一个元素的值
- 缩小堆空间
- 对第一个节点进行堆维护
impl Heap {
fn heap_sort(&mut self) {
let len = self.heap_size();
self.build_max_heap();
let mut v = Vec::with_capacity(self.heap_size());
for i in (2..len + 1).rev() {
let tmp = self.0[0];
self.0[0] = self.0[i - 1];
v.insert(0, tmp);
let len = self.heap_size();
self.0.truncate(len - 1);
self.max_heapify(1);
}
self.0.append(&mut v);
}
}
- 整个堆排序时间复杂度为O(nlgn)
- 构建堆时间复杂度为O(n)
- 每次维护堆为O(lgn), 总共调用n-1次
请发表评论