• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

最小二乘法曲线拟合以及matlab实现

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

原文地址:最小二乘法曲线拟合以及matlab实现
在实际工程中,我们常会遇到这种问题:已知一组点的横纵坐标,需要绘制出一条尽可能逼近这些点的曲线(或直线),以进行进一步进行加工或者分析两个变量之间的相互关系。而获取这个曲线方程的过程就是曲线拟合。

目录
• 最小二乘法直线拟合原理
• 曲线拟合
• Matlab实现代码

最小二乘法直线线拟合原理
首先,我们从曲线拟合的最简单情况——直线拟合来引入问题。如果待拟合点集近似排列在一条直线上时,我们可以设直线 y=ax+b为其拟合方程,系数 A=[a,b]为待求解项,已知:




一、奇异矩阵
1、奇异矩阵是线性代数的概念,就是对应的行列式等于0的矩阵。
2、奇异矩阵的判断方法:首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。 然后,再看此方阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。 同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个重要结论:可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。
二、非奇异矩阵
1、n 阶方阵 A 是非奇异方阵的充要条件是 A 可逆,即可逆方阵就是非奇异方阵。
2、对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =I( I是单位矩阵),则称 A 是可逆的,也称 A 为非奇异矩阵。
3、一个矩阵非奇异当且仅当它的行列式不为零。
4、一个矩阵非奇异当且仅当它代表的线性变换是个自同构。
5、一个矩阵半正定当且仅当它的每个特征值大于或等于零。
6、一个矩阵正定当且仅当它的每个特征值都大于零。
7、一个矩阵非奇异当且仅当它的秩为n。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
【Rust】创建文件发布时间:2022-07-18
下一篇:
Rust 全新官网已上线测试,这样的风格你喜欢吗?发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap