1 :
im2double : [0,255]---->[0,1]
2: grp2idx:
[G,GN] = grp2idx(S) creates an index vector G from the grouping variable S. The result G is a vector taking integer values from 1 up to the number K of distinct groups. GN is a cell array of strings representing group labels.
其实就是一个分类过程,G返回所有的分类索引,GN返回所有的分类。
例如:A = [1 2 3 4 5 6 7 8 9 5 6 1 4 3 2 7 8 9 5 6 2 1 4];
[G,GN] = grp2idx(A);
结果:
G\' = 1 2 3 4 5 6 7 8 9 5 6 1 4 3 2 7 8 9 5 6 2 1 4
GN\' = \'1\' \'2\' \'3\' \'4\' \'5\' \'6\' \'7\' \'8\' \'9\'
即总共有1-9这9个分类,G中的值是A中对应坐标下的相应元素的分类。
3: strtok: Find token in string.
TOKEN = strtok(STR,DELIM) returns the first token delimited by one of the characters in DELIM. strtok ignores any leading delimiters.一般用来对字符串进行分割。
例子:
s = \' This is a simple example.\';
[token, remain] = strtok(s,\'.\')
结果:
token = This is a simple example
remain = .
即以.为分隔符对符串进行分割,注意只返回一个次,如果要进行多次处理,则要用循环来处理,比如:
rem = \'E:\Matlab\Recovering Occlusion Boundaries from a Single Image\';
tok = {};
while ~isempty(rem)
[tok{end+1}, rem] = strtok(rem, \'\\');
end
结果:tok : 1 * 3 cell
tok{1} = ‘E\';
tok{2} = \'Matlab\'
tok{3} = \'Recovering Occlusion Boundaries from a Single Image\'
4: regionprops: Measure properties of image regions,用来度量图像区域属性,统计被标记区域的面积分布,显示区域总数,从而达到测量标注矩阵L中每一个标注区域的一系列属性的目的,调用规则为:
STATS = regionprops(L,properties)
L中不同的正整数元素对应不同的区域,例如:L中等于整数1的元素对应区域1;L中等于整数2的元素对应区域2;以此类推。
返回值STATS是一个长度为max(L(:))的结构数组,结构数组的相应域定义了每一个区域相应属性下的度量。
Properties可以是由逗号分割的字符串列表、包含字符 串的单元数组、单个字符串\'all\'或者\'basic\'。如果properties等于字符串\'all\',则表4.1中的度量数据都将被计算;如果properties等于字符串\'basic\',则属性:\'Area\',\'Centroid\'和\'BoundingBox\'将被计算。
简而言之,如果属性用\'Area\',则返回值STATS中的Area代表每一类的元素个数。
5: integral2
Numerically evaluate double integral
q = integral2(fun,xmin,xmax,ymin,ymax) approximates the integral of the function z = fun(x,y) over the planar region xmin ≤ x ≤ xmax and ymin(x) ≤ y ≤ ymax(x).
example
q = integral2(fun,xmin,xmax,ymin,ymax,Name,Value) specifies additional options with one or moreName,Value pair arguments.
http://www.mathworks.com/help/matlab/ref/integral2.html#btdgcqq
6: quad2d
Numerically evaluate double integral, tiled method
q = quad2d(fun,a,b,c,d) approximates the integral of fun(x,y) over the planar region and . fun is a function handle, c and d may each be a scalar or a function handle.
http://www.mathworks.com/help/matlab/ref/quad2d.html
请发表评论