• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

LDA算法学习(Matlab实现)

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

LDA算法

对于两类问题的LDA(Matlab实现)

 1 function [ W] = FisherLDA(w1,w2)
 2 %W最大特征值对应的特征向量
 3 %w1 第一类样本
 4 %w2 第二类样本
 5 
 6 %第一步:计算样本均值向量
 7 m1=mean(w1);%第一类样本均值
 8 m2=mean(w2);%第二类样本均值
 9 m=mean([w1;w2]);%总样本均值
10 
11 %第二步:计算类内离散度矩阵Sw
12 n1=size(w1,1);%第一类样本数
13 n2=size(w2,1);%第二类样本数
14   %求第一类样本的散列矩阵s1
15 s1=0;
16 for i=1:n1
17     s1=s1+(w1(i,:)-m1)\'*(w1(i,:)-m1);
18 end
19   %求第二类样本的散列矩阵s2
20 s2=0;
21 for i=1:n2
22     s2=s2+(w2(i,:)-m2)\'*(w2(i,:)-m2);
23 end
24 Sw=(n1*s1+n2*s2)/(n1+n2);
25 %第三步:计算类间离散度矩阵Sb
26 Sb=(n1*(m-m1)\'*(m-m1)+n2*(m-m2)\'*(m-m2))/(n1+n2);
27 %第四步:求最大特征值和特征向量
28 %[V,D]=eig(inv(Sw)*Sb);%特征向量V,特征值D
29 A = repmat(0.1,[1,size(Sw,1)]);
30 B = diag(A);
31 [V,D]=eig(inv(Sw + B)*Sb);
32 [a,b]=max(max(D));
33 W=V(:,b);%最大特征值对应的特征向量
34 end

测试:

cls1_data=[2.95 6.63;2.53 7.79;3.57 5.65;3.16 5.47];
cls2_data=[2.58 4.46;2.16 6.22;3.27 3.52];
%样本投影前
plot(cls1_data(:,1),cls1_data(:,2),\'.r\');
hold on;
plot(cls2_data(:,1),cls2_data(:,2),\'*b\');
hold on;
W=FisherLDA(cls1_data,cls2_data);
%样本投影后
new1=cls1_data*W;
new2=cls2_data*W;
k=W(2)/W(1);
plot([0,6],[0,6*k],\'-k\');
axis([2 6 0 11]);
hold on;

%画出样本投影到子空间点
for i=1:4
    temp=cls1_data(i,:);
    newx=(temp(1)+k*temp(2))/(k*k+1);
    newy=k*newx;
    plot(newx,newy,\'*r\');
end;

for i=1:3
    temp=cls2_data(i,:);
    newx=(temp(1)+k*temp(2))/(k*k+1);
    newy=k*newx;
    plot(newx,newy,\'ob\');
end;

  结果:


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap