在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
割线法割线法求解方程\(f(x)=0\)的根需要两个接近真实根\(x^\*\)的初值\(x_0\)和\(x_1\),于是得到函数\(f(x)\)上两个点\((x_0,y_0=f(x_0))\)和\((x_1,y_1=f(x_1))\),连接这两点得到一条直线(割线): \begin{equation*} y-y_1=\frac{y_1-y_0}{x_1-x_0}(x-x_1) \end{equation*} 由于我们要求解\(f(x)=0\),因此设\(y=0\),由上式解出\(x\),作为下次迭代的初值。这个过程一直进行下去,有如下迭代关系: \begin{equation} x_{i+1}=x_i-\frac{x_i-x_{i-1}}{y_i-y_{i-1}}y_i \tag{6.1}\label{6.1} \end{equation} 其中\(y_i=f(x_i)\)。以上过程如图6.1所示。
割线法需要两个初值,但是不需要求函数的导数。割线法程序如下:
盈不足术盈不足术是割线法和二分法的综合。如二分法,我们先选定两个初始点\(a\)和\(b\),且保证\(f(a)\)和\(f(b)\)异号。然后我们根据割线法,得到新的迭代结果, \begin{equation*} x =b-\frac{b-a}{f(b)-f(a)}f(b) \end{equation*} 然后我们按照二分法,判断\(f(x)\)的符号,如果\(f(x)\)与\(f(a)\)同号,则把\(x\)设为新的\(a\),否则,把\(x\)设为新的\(b\)。注意到,一般情况下,\(a\)和\(b\)其中之一逐渐趋近于\(x^\*\),而不大可能二者共同趋近于\(x^\*\),因此不大会\(b-a\nrightarrow 0\)。比如,图6.1中的函数,\(a\rightarrow x^\*\),而\(b\nrightarrow x^\*\)。 收敛性如果我们选的初值\(x_0\)比较好,牛顿法会很快收敛到\(x^\*\)。割线法要比牛顿法慢一些,盈不足术会更慢。二分法是收敛最慢的。 如果我们选的初值或初始区间不够好,割线法——如牛顿法一样——可能会不收敛。盈不足术——如二分法一样——总是收敛的,因为盈不足术会一直保证根在一个确定的区间内。 模拟和实验尽管牛顿法最快,但有些情况下,牛顿法不太好用,甚至根本不能用。比如难以导出\(f'(x)\)表达式的情况。在科学和工程中的一些问题中,甚至连\(f(x)\)的表达式都没有,\(f(x)\)是实验和模拟的结果时就是这样的情况。在这样的情况下,割线法一般是最佳选择。 练习6.1 用纸和计算器对方程\(f(x)=x^3-4=0\)应用三次盈不足术迭代,初始区间\([1,3]\),计算各次迭代结果的误差和相对误差,并与练习3.3和5.2结果做比较。 6.2 写出函数程序myregfalsi,实现盈不足术,并使残量绝对值小于给定公差,并将程序解方程\(f(x)=2x^3+3x-1=0\),初始区间为\([0,1]\),公差为\(10^{-8}\)。程序需要迭代多少步?与练习5.1结果做比较。 |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论