#先上代码后补笔记#
#可以直接复制粘贴使用的MATLAB函数!#
1. 定步长牛顿-柯茨积分公式
function [ integration ] = CompoInt( func, left, right, step, mode ) % 分段积分牛顿-柯茨公式; % 输入5个参数:被积函数(FUNCTIONHANDLE)\'func\',积分上下界\'left\'/\'right\',步长\'step\', % 模式mode共三种(\'midpoint\',\'trapezoid\',\'simpson\'); % 返回积分值; switch mode % 仅仅是公式不同 case \'midpoint\' node = left; integration = 0; while (node + step <= right) % 按照给定步长开始分段积分 pieceInt = step*(func(node + step/2)); % 使用中点积分公式 integration = integration + pieceInt; node = node + step; end if (node < right) % 补齐最后一段积分 pieceInt = (right - node)*(func((node + right)/2)); integration = integration + pieceInt; end case \'trapezoid\' node = left; integration = 0; while (node + step <= right) pieceInt = step*(func(node) + func(node + step))/2; % 使用梯形公式 integration = integration + pieceInt; node = node + step; end if (node < right) pieceInt = (right - node)*(func(node) + func(right))/2; integration = integration + pieceInt; end case \'simpson\' node = left; integration = 0; while (node + step <= right) pieceInt = step*(func(node) + 4*func(node + step/2) + func(node + step))/6; % 使用辛普森公式 integration = integration + pieceInt; node = node + step; end if (node < right) pieceInt = (right - node)*(func(node) + 4*func((node + right)/2) + func(right))/6; integration = integration + pieceInt; end end
2. 自适应分段积分方法
通过函数内调用自身的方法使得积分函数显得简洁明快。因为需要调用自身计算原积分的一段,必须传入参数length标识原积分上下限总长,通过left, right和length三个参数才能够得到某一段的要求精度。
function [ integration ] = AdaptInt( func, left, right, prec, length ) % 自适应分段积分函数AdaptInt; % 输入五个参数:被积函数(句柄)func,积分上下限right,left,要求精度prec,积分总长length; % 输出一个参数:积分值integration; trapeInt = (right - left)*(func(left) + func(right))/2; midInt = (right - left)*func((left + right)/2); err = (trapeInt - midInt)/3; % 由中点公式和梯形公式差估算误差 if (abs(err) < prec && (right - left) < length/5) % 如果误差符合要求,则使用辛普森公式计算较精确结果 integration = (right - left)*(func(left) + 4*func((left + right)/2) + func(right))/6; else % 否则,二分该段,分别进行自适应分段积分 integration = AdaptInt(func, left, (left + right)/2, prec/2, length) + AdaptInt(func, (left + right)/2, right, prec/2, length); end end
请发表评论