MATLAB
numpy.array |
numpy.matrix |
Notes |
|
ndims(a) |
ndim(a) or a.ndim |
get the number of dimensions of a (tensor rank) |
|
numel(a) |
size(a) or a.size |
get the number of elements of an array |
|
size(a) |
shape(a) or a.shape |
get the "size" of the matrix |
|
size(a,n) |
a.shape[n-1] |
get the number of elements of the nth dimension of array a. (Note that MATLAB® uses 1 based indexing while Python uses 0 based indexing, See note \'INDEXING\') |
|
[ 1 2 3; 4 5 6 ] |
array([[1.,2.,3.], |
mat([[1.,2.,3.], |
2x3 matrix literal |
[ a b; c d ] |
vstack([hstack([a,b]), |
bmat(\'a b; c d\') |
construct a matrix from blocks a,b,c, and d |
a(end) |
a[-1] |
a[:,-1][0,0] |
access last element in the 1xn matrix a |
a(2,5) |
a[1,4] |
access element in second row, fifth column |
|
a(2,:) |
a[1] or a[1,:] |
entire second row of a |
|
a(1:5,:) |
a[0:5] or a[:5] or a[0:5,:] |
the first five rows of a |
|
a(end-4:end,:) |
a[-5:] |
the last five rows of a |
|
a(1:3,5:9) |
a[0:3][:,4:9] |
rows one to three and columns five to nine of a. This gives read-only access. |
|
a([2,4,5],[1,3]) |
a[ix_([1,3,4],[0,2])] |
rows 2,4 and 5 and columns 1 and 3. This allows the matrix to be modified, and doesn\'t require a regular slice. |
|
a(3:2:21,:) |
a[ 2:21:2,:] |
every other row of a, starting with the third and going to the twenty-first |
|
a(1:2:end,:) |
a[ ::2,:] |
every other row of a, starting with the first |
|
a(end:-1:1,:) or flipud(a) |
a[ ::-1,:] |
a with rows in reverse order |
|
a([1:end 1],:) |
a[r_[:len(a),0]] |
a with copy of the first row appended to the end |
|
a.\' |
a.transpose() or a.T |
transpose of a |
|
a\' |
a.conj().transpose() or a.conj().T |
a.H |
conjugate transpose of a |
a * b |
dot(a,b) |
a * b |
matrix multiply |
a .* b |
a * b |
multiply(a,b) |
element-wise multiply |
a./b |
a/b |
element-wise divide |
|
a.^3 |
a**3 |
power(a,3) |
element-wise exponentiation |
(a>0.5) |
(a>0.5) |
matrix whose i,jth element is (a_ij > 0.5) |
|
find(a>0.5) |
nonzero(a>0.5) |
find the indices where (a > 0.5) |
|
a(:,find(v>0.5)) |
a[:,nonzero(v>0.5)[0]] |
a[:,nonzero(v.A>0.5)[0]] |
extract the columms of a where vector v > 0.5 |
a(:,find(v>0.5)) |
a[:,v.T>0.5] |
a[:,v.T>0.5)] |
extract the columms of a where column vector v > 0.5 |
a(a<0.5)=0 |
a[a<0.5]=0 |
a with elements less than 0.5 zeroed out |
|
a .* (a>0.5) |
a * (a>0.5) |
mat(a.A * (a>0.5).A) |
a with elements less than 0.5 zeroed out |
a(:) = 3 |
a[:] = 3 |
set all values to the same scalar value |
|
y=x |
y = x.copy() |
numpy assigns by reference |
|
y=x(2,:) |
y = x[1,:].copy() |
numpy slices are by reference |
|
y=x(:) |
y = x.flatten(1) |
turn array into vector (note that this forces a copy) |
|
1:10 |
arange(1.,11.) or |
mat(arange(1.,11.)) or |
create an increasing vector see note \'RANGES\' |
0:9 |
arange(10.) or |
mat(arange(10.)) or |
create an increasing vector see note \'RANGES\' |
[1:10]\' |
arange(1.,11.)[:, newaxis] |
r_[1.:11.,\'c\'] |
create a column vector |
zeros(3,4) |
zeros((3,4)) |
mat(...) |
3x4 rank-2 array full of 64-bit floating point zeros |
zeros(3,4,5) |
zeros((3,4,5)) |
mat(...) |
3x4x5 rank-3 array full of 64-bit floating point zeros |
ones(3,4) |
ones((3,4)) |
mat(...) |
3x4 rank-2 array full of 64-bit floating point ones |
eye(3) |
eye(3) |
mat(...) |
3x3 identity matrix |
diag(a) |
diag(a) |
mat(...) |
vector of diagonal elements of a |
diag(a,0) |
diag(a,0) |
mat(...) |
square diagonal matrix whose nonzero values are the elements of a |
rand(3,4) |
random.rand(3,4) |
mat(...) |
random 3x4 matrix |
linspace(1,3,4) |
linspace(1,3,4) |
mat(...) |
4 equally spaced samples between 1 and 3, inclusive |
[x,y]=meshgrid(0:8,0:5) |
mgrid[0:9.,0:6.] or |
mat(...) |
two 2D arrays: one of x values, the other of y values |
ogrid[0:9.,0:6.] or |
mat(...) |
the best way to eval functions on a grid |
|
[x,y]=meshgrid([1,2,4],[2,4,5]) |
meshgrid([1,2,4],[2,4,5]) |
mat(...) |
|
ix_([1,2,4],[2,4,5]) |
mat(...) |
the best way to eval functions on a grid |
|
repmat(a, m, n) |
tile(a, (m, n)) |
mat(...) |
create m by n copies of a |
[a b] |
concatenate((a,b),1) or |
concatenate((a,b),1) |
concatenate columns of a and b |
[a; b] |
concatenate((a,b)) or |
concatenate((a,b)) |
concatenate rows of a and b |
max(max(a)) |
a.max() |
maximum element of a (with ndims(a)<=2 for matlab) |
|
max(a) |
a.max(0) |
maximum element of each column of matrix a |
|
max(a,[],2) |
a.max(1) |
maximum element of each row of matrix a |
|
max(a,b) |
maximum(a, b) |
compares a and b element-wise, and returns the maximum value from each pair |
|
norm(v) |
sqrt(dot(v,v)) or |
sqrt(dot(v.A,v.A)) or |
L2 norm of vector v |
a & b |
logical_and(a,b) |
element-by-element AND operator (Numpy ufunc) see note \'LOGICOPS\' |
|
a | b |
logical_or(a,b) |
element-by-element OR operator (Numpy ufunc) see note \'LOGICOPS\' |
|
bitand(a,b) |
a & b |
bitwise AND operator (Python native and Numpy ufunc) |
|
bitor(a,b) |
a | b |
bitwise OR operator (Python native and Numpy ufunc) |
|
inv(a) |
linalg.inv(a) |
inverse of square matrix a |
|
pinv(a) |
linalg.pinv(a) |
pseudo-inverse of matrix a |
|
rank(a) |
linalg.matrix_rank(a) |
rank of a matrix a |
|
a\b |
linalg.solve(a,b) if a is square |
solution of a x = b for x |
|
b/a |
Solve a.T x.T = b.T instead |
solution of x a = b for x |
|
[U,S,V]=svd(a) |
U, S, Vh = linalg.svd(a), V = Vh.T |
singular value decomposition of a |
|
chol(a) |
linalg.cholesky(a).T |
cholesky factorization of a matrix (chol(a) in matlab returns an upper triangular matrix, but linalg.cholesky(a) returns a lower triangular matrix) |
|
[V,D]=eig(a) |
D,V = linalg.eig(a) |
eigenvalues and eigenvectors of a |
|
[V,D]=eig(a,b) |
V,D = Sci.linalg.eig(a,b) |
eigenvalues and eigenvectors of a,b |
|
[V,D]=eigs(a,k) |
find the k largest eigenvalues and eigenvectors of a |
||
[Q,R,P]=qr(a,0) |
Q,R = Sci.linalg.qr(a) |
mat(...) |
QR decomposition |
[L,U,P]=lu(a) |
L,U = Sci.linalg.lu(a) or |
mat(...) |
LU decomposition (note: P(Matlab) == transpose(P(numpy)) ) |
conjgrad |
Sci.linalg.cg |
mat(...) |
Conjugate gradients solver |
fft(a) |
fft(a) |
mat(...) |
Fourier transform of a |
ifft(a) |
ifft(a) |
mat(...) |
inverse Fourier transform of a |
sort(a) |
sort(a) or a.sort() |
mat(...) |
sort the matrix |
[b,I] = sortrows(a,i) |
I = argsort(a[:,i]), b=a[I,:] |
sort the rows of the matrix |
|
regress(y,X) |
linalg.lstsq(X,y) |
multilinear regression |
|
decimate(x, q) |
Sci.signal.resample(x, len(x)/q) |
downsample with low-pass filtering |
|
unique(a) |
unique(a) |
||
squeeze(a) |
a.squeeze() |
MATLAB
numpy |
Notes |
||
help func |
info(func) or help(func) or func? (in Ipython) |
get help on the function func |
|
which func |
find out where func is defined |
||
type func |
source(func) or func?? (in Ipython) |
print source for func (if not a native function) |
|
a && b |
a and b |
short-circuiting logical AND operator (Python native operator); scalar arguments only |
|
a || b |
a or b |
short-circuiting logical OR operator (Python native operator); scalar arguments only |
|
1*i,1*j,1i,1j |
1j |
complex numbers |
|
eps |
spacing(1) |
Distance between 1 and the nearest floating point number |
|
ode45 |
scipy.integrate.ode(f).set_integrator(\'dopri5\') |
integrate an ODE with Runge-Kutta 4,5 |
|
ode15s |
scipy.integrate.ode(f).\ |
integrate an ODE with BDF |
请发表评论