• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

utuntu16.04安装caffe+Matlab2017a+opencv3.1+CUDA8.0+cudnn6.0

原作者: [db:作者] 来自: [db:来源] 收藏 邀请
  • 上午把tensorflow安装好了,下午和晚上装caffe的确很费劲。
  • 默认CUDA,cuDNN可以用了
  • caffe官方安装教程
  • 有些安装顺序自己也不清楚,简直就是碰运气

1. 安装之前依赖项

General dependencies

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev

安装matlab见后面:

为什么需要安装Matlab?
caffe有Matlab的接口,因此如果需要使用Matlab调用caffe,进行编程,就需要安装Matlab。如果你觉得使用C或Python编程比较难,就请安装Matlab。当然如果不需要,并且后面不会编译caffe生成Matlab的接口,就不需要安装Matlab了。这个纯粹根据个人需求来定。


为什么需要安装OpenCV?
caffe是用来做深度学习的,深度学习的一大应用对象就是图像和视频。而OpenCV是目前最火的开源计算机视觉库,非常多的项目多用到了OpenCV,当然caffe也依赖OpenCV。所以,需要安装OpenCV,否则无法使用caffe哦

OpenCV的版本和cuda的版本最好匹配。这样子安排的目的是为了减少错误出现的概率

 

2.OpeCV安装

从官网(http://opencv.org/downloads.html)下载Opencv,并将其解压到你要安装的位置,假设解压到了/home/opencv。 安装前准备,创建编译文件夹:

cd ~/opencv
mkdir build
cd build

配置:

cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..

编译:

make -j8  #-j8表示并行计算,根据自己电脑的配置进行设置,配置比较低的电脑可以将数字改小或不使用,直接输make。

以上只是将opencv编译成功,还没将opencv安装,需要运行下面指令进行安装:

sudo make install

问题:由于CUDA 8.0不支持OpenCV的 GraphCut 算法,可能出现以下错误:

 

/home/dsp/opencv-3.1.0/modules/core/include/opencv2/core/private.cuda.hpp:165:52: note: in definition of macro ‘nppSafeCall’
 #define nppSafeCall(expr)  cv::cuda::checkNppError(expr, __FILE__, __LINE__, CV_Func)
                                                    ^
modules/cudalegacy/CMakeFiles/opencv_cudalegacy.dir/build.make:146: recipe for target \'modules/cudalegacy/CMakeFiles/opencv_cudalegacy.dir/src/graphcuts.cpp.o\' failed
make[2]: *** [modules/cudalegacy/CMakeFiles/opencv_cudalegacy.dir/src/graphcuts.cpp.o] Error 1
make[2]: *** 正在等待未完成的任务....
CMakeFiles/Makefile2:9226: recipe for target \'modules/cudalegacy/CMakeFiles/opencv_cudalegacy.dir/all\' failed
make[1]: *** [modules/cudalegacy/CMakeFiles/opencv_cudalegacy.dir/all] Error 2
make[1]: *** 正在等待未完成的任务....
[ 92%] Linking CXX shared library ../../lib/libopencv_photo.so
[ 92%] Built target opencv_photo
Makefile:160: recipe for target \'all\' failed
make: *** [all] Error 2

 

进入opencv-3.1.0/modules/cudalegacy/src/目录,修改graphcuts.cpp文件,将:

#include "precomp.hpp"

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

改为

#include "precomp.hpp"

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || (CUDART_VERSION >= 8000)

然后make编译就可以了

- 编译和安装完成

 

装BLAS

这里可以选择(ATLAS,MKL或者OpenBLAS):不知道这个,下载有问题,所以就没有搞这个,但是makefile.config文件里面有配置

MKL首先下载并安装英特尔® 数学内核库 Linux* 版MKL(Intel(R) Parallel Studio XE Cluster Edition for Linux 2016),下载链接是:https://software.intel.com/en-us/qualify-for-free-software/student, 使用学生身份(邮件 + 学校)下载Student版,填好各种信息,可以直接下载,同时会给你一个邮件告知序列号。

后面就直接:sudo apt-get install libatlas-base-dev -y  

sudo apt-get install libatlas-base-dev 

 3.MATLAB2017a安装

4.安装caffe

(1)将终端cd到要安装caffe的位置。
(2)从github上获取caffe:

git clone https://github.com/BVLC/caffe.git

注意:若没有安装Git,需要先安装Git:

sudo apt-get install git
3)因为make指令只能make Makefile.config文件,而Makefile.config.example是caffe给出的makefile例子,因此,首先将Makefile.config.example的内容复制到Makefile.config:

sudo cp Makefile.config.example Makefile.config
4)打开并修改配置文件:

sudo gedit Makefile.config #打开Makefile.config文件
  • 自己按照改了一下,里面有写需要注意
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
  USE_OPENCV := 1
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#    You should not set this flag if you will be reading LMDBs with any
#    possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you\'re using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
        -gencode arch=compute_20,code=sm_21 \
        -gencode arch=compute_30,code=sm_30 \
        -gencode arch=compute_35,code=sm_35 \
        -gencode arch=compute_50,code=sm_50 \
        -gencode arch=compute_52,code=sm_52 \
        -gencode arch=compute_60,code=sm_60 \
        -gencode arch=compute_61,code=sm_61 \
        -gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
MATLAB_DIR := /home/dsp
#MATLAB_DIR := /home/dsp/bin

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#  PYTHON_INCLUDE := /usr/include/python2.7 \
#          /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it\'s in root.
ANACONDA_HOME := /home/dsp/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
          $(ANACONDA_HOME)/include/python2.7 \
          $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
#  PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c \'import numpy.core; print(numpy.core.__file__)\'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.

#INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
#LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include /usr/lib/x86_64-linux-gnu/hdf5/serial/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that \'make runtest\' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @


LINKFLAGS := -Wl,-rpath,$(HOME)/anaconda2/lib

 

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#    You should not set this flag if you will be reading LMDBs with any
#    possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you\'re using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
        -gencode arch=compute_20,code=sm_21 \
        -gencode arch=compute_30,code=sm_30 \
        -gencode arch=compute_35,code=sm_35 \
        -gencode arch=compute_50,code=sm_50 \
        -gencode arch=compute_52,code=sm_52 \
        -gencode arch=compute_60,code=sm_60 \
        -gencode arch=compute_61,code=sm_61 \
        -gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
# PYTHON_INCLUDE := /usr/include/python2.7 \
        /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it\'s in root.
ANACONDA_HOME := /home/dsp/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
          $(ANACONDA_HOME)/include/python2.7 \
          $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c \'import numpy.core; print(numpy.core.__file__)\'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.

#INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
#LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include /usr/lib/x86_64-linux-gnu/hdf5/serial/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that \'make runtest\' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?=

问题:

第一次编译:出错

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev

AR -o .build_release/lib/libcaffe.a
LD -o .build_release/lib/libcaffe.so.1.0.0
/usr/bin/ld: 找不到 -lhdf5_hl
/usr/bin/ld: 找不到 -lhdf5
/usr/bin/ld: 找不到 -lcudnn
collect2: error: ld returned 1 exit status
Makefile:572: recipe for target \'.build_release/lib/libcaffe.so.1.0.0\' failed
make: *** [.build_release/lib/libcaffe.so.1.0.0] Error 1

- hdf5的问题,通过修改Makefile.config文件

在文件里面添加文本由于hdf5库目录更改,所以需要单独添加:
#INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
#LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include /usr/lib/x86_64-linux-gnu/hdf5/serial/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial

- 然后再次编译有一个问题:

dsp@dsp:~/caffe$ make all -j16
LD -o .build_release/lib/libcaffe.so.1.0.0
/usr/bin/ld: 找不到 -lcudnn
collect2: error: ld returned 1 exit status
Makefile:572: recipe for target \'.build_release/lib/libcaffe.so.1.0.0\' failed
make: *** [.build_release/lib/libcaffe.so.1.0.0] Error 1
  • i found that in the path "/usr/local/cuda/lib64/" don\'t have the file liblcudnn.so

该问题还在有待解决。

- 这个问题其实挺简单的:后面自己想清楚了:就是cudnn的链接问题,重新拷贝cudnn文件;然后链接了一遍,后面就不报这个错了

- 继续编译错误:

//home/dsp/anaconda2/lib/libpng16.so.16:对‘inflateValidate@ZLIB_1.2.9’未定义的引用/
/homecollect2: error: ld returned 1 exit status
/dsp/anaconda2/lib/libpng16.so.16:对‘inflateValidate@ZLIB_1.2.9’�Makefile:625: recipe for target \'.build_release/tools/upgrade_net_proto_text.bin\' failed
make: *** [.build_release/tools/upgrade_net_proto_text.bin] Error 1
�make: *** 正在等待未完成的任务....
�定义的引用
collect2: error: ld returned 1 exit status
Makefile:625: recipe for target \'.build_release/tools/upgrade_net_proto_binary.bin\' failed
make: *** [.build_release/tools/upgrade_net_proto_binary.bin] Error 1
//home/dsp/anaconda2/lib/libpng16.so.16:对‘inflateValidate@ZLIB_1.2.9’未定义的引用
collect2: error: ld returned 1 exit status
Makefile:625: recipe for target \'.build_release/tools/upgrade_solver_proto_text.bin\' failed
make: *** [.build_release/tools/upgrade_solver_proto_text.bin] Error 1
//home/dsp/anaconda2/lib/libpng16.so.16:对‘inflateValidate@ZLIB_1.2.9’未定义的引用
collect2: error: ld returned 1 exit status

- 然后我添加链接:sudo ln -s /home/username/anaconda2/lib/libpng16.so.16 libpng16.so.16 (方法不行)报另外的错:

/usr/local/cuda-8.0/lib64/libpng16.so.16:对‘inflateValidate@ZLIB_1.2.9’未定义的引用
collect2: error: ld returned 1 exit status
Makefile:625: recipe for target \'.build_release/tools/upgrade_net_proto_binary.bin\' failed
make: *** [.build_release/tools/upgrade_net_proto_binary.bin] Error 1
make: *** 正在等待未完成的任务....
/usr/local/cuda-8.0/lib64/libpng16.so.16:对‘inflateValidate@ZLIB_1.2.9’未定��/usr�的引用
/localcollect2: error: ld returned 1 exit status
/cuda-8.0/lib64/libpng16.so.16:对‘inflateValidate@ZLIB_1.2.9’未定义/的引用
collect2: error: ld returned 1 exit status
usr/local/cudaMakefile:630: recipe for target \'.build_release/examples/siamese/convert_mnist_siamese_data.bin\' failed
-make: *** [.build_release/examples/siamese/convert_mnist_siamese_data.bin] Error 1
8.0/lib64/libpng16.so.16:对‘inflateValidate@ZLIB_1.2.9’未定义的引用
collect2: error: ld returned 1 exit status

- 最后非常感谢:Caffe 编译错误记录:http://blog.csdn.net/ruotianxia/article/details/78437464 

  • 里面的几个错误有代表性,按照下面的方法就没有报这个错了

 

在 Makefile.config 中,加入下一句
LINKFLAGS := -Wl,-rpath,$(HOME)/anaconda2/lib

- 然后执行:make all  报错:

dsp@dsp:~/caffe$ make all -j16
make: Nothing to be done for \'all\'
  • 解决方法很简单:
  •  make: Nothing to be done for `all\' 解决方法
    1.这句提示是说明你已经编译好了,而且没有对代码进行任何改动。
    若想重新编译,可以先删除以前编译产生的目标文件:
    
        make clean 
    
        make 

 

5. 黎明的曙光

  • 按照如下编译顺序
make all -j16
make runtest -j16
make pycaffe -j16
make matcaffe -j16

- 其中make all 和make runtest时间比较长;make pycaffe 很顺利

[----------] Global test environment tear-down
[==========] 2123 tests from 281 test cases ran. (285688 ms total)
[  PASSED  ] 2123 tests.
dsp@dsp:~/caffe$ make pycaffe -j16
touch python/caffe/proto/__init__.py
CXX/LD -o python/caffe/_caffe.so python/caffe/_caffe.cpp
PROTOC (python) src/caffe/proto/caffe.proto

- 实际使用pycaffe,出错:

dsp@dsp:~/caffe$ python
Python 2.7.14 |Anaconda, Inc.| (default, Oct 16 2017, 17:29:19) 
[GCC 7.2.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> caffe_root="/home/dsp/caffe/"
>>> sys.path.insert(0,caffe_root+\'python\')
>>> import caffe
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/dsp/caffe/python/caffe/__init__.py", line 1, in <module>
    from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver, NCCL, Timer
  File "/home/dsp/caffe/python/caffe/pycaffe.py", line 15, in <module>
    import caffe.io
  File "/home/dsp/caffe/python/caffe/io.py", line 8, in <module>
    from caffe.proto import caffe_pb2
  File "/home/dsp/caffe/python/caffe/proto/caffe_pb2.py", line 6, in <module>
    from google.protobuf.internal import enum_type_wrapper
ImportError: No module named google.protobuf.internal
  • 通过conda下安装protobuf即可
  • python caffe报错:No module named google.protobuf.internal
    
    我装的是anaconda2, 解决方法是在其中安装protobuf最新版本
    
    conda install protobuf

6. MNIST数据集测试

配置caffe完成后,我们可以利用MNIST数据集对caffe进行测试,过程如下:
1.将终端定位到Caffe根目录

cd ~/caffe

2.下载MNIST数据库并解压缩

./data/mnist/get_mnist.sh

3.将其转换成Lmdb数据库格式

./examples/mnist/create_mnist.sh

4.训练网络

 ./examples/mnist/train_lenet.sh

训练的时候可以看到损失与精度数值,如下图:

- make matcaffe 有gcc版本问题

dsp@dsp:~/caffe$ make matcaffe -j16
MEX matlab/+caffe/private/caffe_.cpp
使用 \'g++\' 编译。
警告: 您使用的 gcc 版本为 \'5.4.0\'。不支持该版本的 gcc。MEX 当前支持的版本为 \'4.9.x\'。有关当前支持的编译器列表,请参阅: http://www.mathworks.com/support/compilers/current_release。
MEX 已成功完成。
  • 解决办法是:
    
     在Makefile里面,大约第410行那一句话
    
    CXXFLAGS += -MMD -MP
    
    下面添加CXXFLAGS += -std=c++11,
    
    最后是这样 CXXFLAGS += -MMD -MP CXXFLAGS += -std=c++11
    
    然后在caffe根目录下make clean,make all

- 执行 make mattest的时候,报错:

.......

b/+caffe/private/caffe_.mexa64\'
需要的符号 \'_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEED1Ev\'
缺少
\'/usr/lib/x86_64-linux-gnu/libboost_python-py27.so.1.58.0->/home/dsp/caffe/matlab/+caffe/private/caffe_.mexa64\'
需要的符号
\'_ZNSt7__cxx1112basic_stringIwSt11char_traitsIwESaIwEE12_M_constructEmw\'
缺少
\'/usr/lib/x86_64-linux-gnu/libboost_python-py27.so.1.58.0->/home/dsp/caffe/matlab/+caffe/private/caffe_.mexa64\'
需要的符号
\'_ZNSt7__cxx1112basic_stringIwSt11char_traitsIwESaIwEE9_M_createERmm\'。

出错 caffe.set_mode_cpu (line 5)
caffe_(\'set_mode_cpu\');

出错 caffe.run_tests (line 6)
caffe.set_mode_cpu();

- 参考:Caffe中使用MATLAB接口

  •  最后设置调用caffe/python的路径,可以在任意路径终端下导入caffe
  • 经过差不多两天的时间,安装了很多东西,情形庆幸没有重装系统,具体的内容如下:
cuda: /usr/local/
opencv_3.1: /usr/local/
anaconda2,caffe: /home/dsp/

python系统默认:2.7
anaconda:2.7 ;虚拟环境下tensorflow_py3.5

matlab2017a: /home/dsp/bin/matlab
caffe: /home/dsp/caffe

使用方法:
------
matlab2017a: 终端输入: matlab即可,界面有问题,待解决

------
默认终端python:
dsp@dsp:~$ python
Python 2.7.14 |Anaconda, Inc.| (default, Oct 16 2017, 17:29:19) 
[GCC 7.2.0] on linux2

------
终端输入:spyder
python为:anaconda自带的python2.7

------
tensorflow1.4 + python3.5使用:
dsp@dsp:~$ source activate tensorflow_py3.5
(tensorflow_py3.5) dsp@dsp:~$ spyder

注: 1. 需要不同的python环境,需要自己创建虚拟环境
     2. 安装依赖项时注意,安装的位置
     3. 也可以通过:(tensorflow_py3.5) dsp@dsp:~$ anaconda-navigator 来安装和启动spyder


------
pycharm 使用:

1. 解压安装包可直接使用
2. 运行:(tensorflow_py3.5) dsp@dsp:~$ sh ./pycharm/bin/pycharm.sh ;只要路径对即可
3. 设置解释器为:python2.7 或者tensorflow_py3.5

------
caffe 使用:

1. 使用anaconda自带的python2.7即可
2. 添加caffe的路径,再使用
3. 本机可以在任意路径终端下:输入:python; 然后:import caffe

 

Reference:

Ubuntu16.04+CUDA8.0+caffe配置:

安装ubuntu16.04+cuda8.0+caffe+python+matlab+opencv3.0
http://blog.csdn.net/shiorioxy/article/details/52652831
http://blog.csdn.net/u012841667/article/details/53572431(makefile.config各代码配置说明)


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
解析Delphi中的LoadLibrary,GetProcAddress,FreeLibrary发布时间:2022-07-18
下一篇:
delphi中如何设置窗口默认的按钮发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap