• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Delphi接口的底层实现

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

Delphi接口的底层实现

引言

接口是面向对象程序语言中一个很重要的元素,它被描述为一组服务的集合,对于客户端来说,我们关心的只是提供的服务,而不必关心服务是如何实现的;对于服务端的类来说,如果它想实现某种服务,实现与该服务相关的接口即可,它也不必与使用服务的客户端进行过多的交互。这种良好的设计方式已经受到很广泛的应用。

早在Delphi 3的时候就引入了接口的概念,当时完全是因为COM的出现而诞生的,但经过这么多版本的进化,Delphi的接口已经成为Object Pascal语言的一部分,我们完全可以用接口来完成我们的设计,而不用考虑与COM相关的东西。

那么接口在Delphi中是如何实现的呢,很多人想得很复杂,其实它的本质不过也是一些简单的数据结构和调用规则。笔者假设读者已经有接口的使用经验,本文试图向你展示接口在Delphi中的实现过程,使你在使用接口的时候,知其然而知其所以然。

接口在内存中的分布

接口在概念上并不是一个实体,它需要与实现接口的类关联,如果脱离了这些类,接口就变得没有意义了。但接口在内存中仍然有其布局,它依附在对象的内存空间中。

Delphi对象本质上是一个指向特定内存空间的指针,这块内存的前四个字节是一个指针指向类的VMT表,接下来排布对象的数据成员,如果对象实现了接口,则在后面又排着一系列指针,我们可以认为这些指针就是对应的接口,每个指针就指向一个接口方法表。我们来看一下简单的例子:

type
ITest1=interface
['{5347BB0D-89B7-4674-A991-5C527BE6F8A8}']
procedureSayHello1;
end;

ITest2=interface
['{567B86BB-711D-40C2-8E5E-364B742C2FF1}']
procedureSayHello2;
end;

TTest=class(TInterfacedObject,ITest1,ITest2)
public
procedureSayHello1;
procedureSayHello2;
end;
......
implementation

{TTest}
procedureTTest.SayHello1;
begin

showMessage(IntToStr(FRefCount));
ShowMessage('Itest1sayhello');
end;

procedureTTest.SayHello2;
begin

ShowMessage(IntToStr(FRefCount));
ShowMessage('Itest2sayhello');
end;

end.

上面是两个接口的声明以及一个实现接口的类,TTest类在内存中的分布可以用下图来表示:

其中FRefCount为父类TInterfacedObject的一个成员,接下来存放的是TInterfacedObject实现的接口IInterface,再下来分别是TTest类实现的ITest2ITest1指针。各个接口指针分别指向各自的方法表,注意ITest2ITest1是从IInterface继承下来的,所以自然就有了IInterface的所有方法。方法表中每个指针指向方法真正实现的地方,其实这个说法只是暂时的,稍后会解释方法表中的指针真正指向的地方,并说明其原因。

上面的内存分布并非笔者随意想出来的,而是经过多次测试证实的,下面我们用一些代码来证实上面分布图:

var

test: Itest2;

begin

test := TTest.Create;

test.SayHello2;

end;

在证明接口的内存布局之前,需要了解接口的变量是个什么东西,比如上面的test是什么,它的本质上是一个指针,在没有被赋值之前,它指向空;而得到对象的赋值之后,它指向上面分布图中的Itest2处,对于同一个对象的多个接口变量来说,它们的“值”不一定是相等的,比如有下面的代码:

Var

Test1: ITest1;

Test2: ITest2;

Test: TTest;

Begin

Test := Ttest.Create;

Test1 := Test;

Test2 := Test;

If Integer(Test1) <> Integer(Test2) then

ShowMessage('it is not eqeual');

End;

最后,会弹出一个对话框,说明Test1Test2是不相等的;只有属性同一种接口类型,这两个变量才会相等,比如Test1Test2都是Iinterface,则他们的“值”是相等的。

好了,回过头来看看之前的代码片段吧,在第4行设置断点,运行程序并使上面代码执行,程序执行到断点处中止,按下Ctrl+Alt+C调用CPU窗口,可以看到下面的反汇编代码:

Unit1.pas.49: test := TTest.Create;

mov dl,$01

mov eax,[$00458e0c]; eax指向VMT的地址

call TObject.Create; 创建TTest对象,eax指向TTest对象的首地址

mov edx,eax; edx指向eax指向的地方,edx也指向TTest对象的首地址

test edx,edx; 测试TTest对象是否有效

jz +$03

sub edx,-$0c; 对象首地址偏移12个字节,到ITest2指针处

lea eax,[ebp-$04]; test变量的地址是ebp-04的值,eax指向这个地址

call @IntfCopy; 调用IntfCopy,将edx的值拷贝给eax,引用计数管理

Unit1.pas.50: test.SayHello2;

mov eax,[ebp-$04]; test指向的地址赋给eax,此时eax指向Itest2的地址

mov edx,[eax]; eax的内容赋给edx,此时edx指向ITest2指向的方法表

call dword ptr [edx+$0c]; 调用ITest2指向的方法表偏移12个字节处。

... ...

ret

sub edx,-$0c这一句,edx原来指向对象的内存空间,偏移12个字节刚好到哪里呢?刚好到ITest2接口指针处。接下来eax指向Test变量在栈中的地址,此时如果直接将edx赋值给eax在逻辑上也没有错,但这样就不能对接口进行引用计数的管理了。因此要调用IntfCopy,进行接口地址的赋值,再加上一个引用计数。

IntfCopy其实是调用System单元中的_IntfCopy,它的实现如下:

procedure_IntfCopy(varDest:IInterface;constSource:IInterface);
{$IFDEFPUREPASCAL}
var
P:Pointer;
begin
P:=Pointer(Dest);//保存Dest,无引用计数
ifSource<>nilthen
Source._AddRef;//增加Source的引用计数,即增加ITest2的引用计数
Pointer(Dest):=Pointer(Source);//Source的值赋给Dest,无引用计数
ifP<>nilthen
IInterface(P)._Release;//减少目标接口的引用计数,但这里的P为空指针,所以不会调用这句
end;

此时的Dest参数是eax,亦即Test变量的地址,Source参数是edx,正好是对象内容空间中的ITest2的地址。我们看到其中只是对接口地址的拷贝,及增加接口的引用计数。如果Dest有内容,则减少它的引用计数,不过这里Dest为空,所以不会调用减少引用计数的代码。

接下来到call dword ptr [edx+$0c]edx指向ITest2指向的方法表首地址,而edx+$0c偏移到哪里呢,看看上面的内存图,正好到ISayHello2处。此时调用ISayHello2指向地址的代码,我们可以简单地认为就是调用TTest.SayHello2。但事实上却不是这样的,为什么?因为在调用SayHello2之前,要先指定eax的值为TTest对象的Self指针,以此作为隐含参数传进SayHello2

我们可以到[edx+$0c]的地址看看,按F8将执行点执行到call dword ptr [edx+$0c]这一句,再按F7,跳到[edx+$0c]的地址,可以看到下面的反汇编代码:

add eax,-$0c; eax向上偏移12个字节正好是对象内存首地址。

jmp TTest.SayHello2 跳到TTest.SayHello2处。

仔细看前面的汇编码,可以知道eax正好指向ITest2指针,向上偏移12个字节则好就到了对象内存的首地址。接着调用TTest.SayHello2完成。

通过上面的例子,不仅证明了接口在对象内存空间中的布局,还可以得出以下结论:

1. 一个实现特定接口的对象创建完之后赋给该接口,编译器作了一些工作,使得接口变量指向了对象内存中的某个特定地址。

2. 调用接口的方法时,实际上调用的是接口方法表中特定的地址,在该地址处编译器计算出实现该接口的对象内存首地址,再调用对象相应的方法。

接口内存空间的形成

上节说明了接口在对象内存空间中的分布,但对象内存空间是在运行时生成的,那么接口的内存空间是如何生成的呢,这一节将阐述之。

在此之前,让我们再回到上面的对象内存图,对象内存的首地址是一个指针,指向一张VMT表,而Delphi的类其实也是一个指针,这个指针正好也指向VMT表。类是在编译时就确定下来的,VMT表当然也是编译器生成的。

VMT表在负偏移vmtIntfTable-72)字节处是一个指针,它指向下面的数据结构:PInterfaceTable = ^TInterfaceTable;

TInterfaceTable = packed record

EntryCount: Integer;

Entries: array[0..9999] of TInterfaceEntry;

end;

EntryCount表示对象实现的接口数。

Entries是一个指向TInterfaceEntry结构的数组,TInterfaceEntry表示了一个接口的进入点,它的声明如下:

PInterfaceEntry = ^TInterfaceEntry;

TInterfaceEntry = packed record

IID: TGUID;

VTable: Pointer;

IOffset: Integer;

ImplGetter: Integer;

end;

IID表示接口的GUID,如果接口没有指定GUID,则它里面的值全为0

VTable指向接口的方法表。

IOffset指明接口与对象首地址的偏移。

ImplGetter是一个方法指针,当IOffset不可用时指向接口的地址,一般不用,初始化为0

上面的数据结构在编译期就生成了,那么当一个对象创建时,相应的接口内存是如何生成的呢。在对象创建完毕之后,会调用TObejct.InitInstance(Instance: Pointer)类方法初始化对象的数据。看其代码:

classfunctionTObject.InitInstance(Instance:Pointer):TObject;
{$IFDEFPUREPASCAL}
var
IntfTable:PInterfaceTable;
ClassPtr:TClass;
I:Integer;
begin
//将对象全部清0
FillChar(Instance^,InstanceSize,0);
//指定首地址为Self,即指向VMT的指针
PInteger(Instance)^:=Integer(Self);
ClassPtr:=Self;
//建立对象的接口内存分布
whileClassPtr<>nildo
begin
//取得接口表
IntfTable:=ClassPtr.GetInterfaceTable;
ifIntfTable<>nilthen
forI:=0toIntfTable.EntryCount-1do
withIntfTable.Entries[I]do
begin
ifVTable<>nilthen
//对象偏移IOffset处,设定为指向VTable的指针
PInteger(@PChar(Instance)[IOffset])^:=Integer(VTable);
end;
//继续建立其父类的接口内存内存
ClassPtr:=ClassPtr.ClassParent;
end;
Result:=Instance;
end;

我们看PInteger(@PChar(Instance)[IOffset])^:=Integer(VTable)这一句,@PChar(Instance)[IOffset]是对象偏移IOffset的地址,而IOffsetIntfTable.Entries[I]IOffset,这个值在编译期就指定了,是接口到对象的偏移值。所以,经过上面方法调用之后,对象的内存空间就如同前面所画一样了。

现在我们对接口在内存的来龙去脉已经了如指掌,可以利用这些知识来实现一些非常的功能了。在我们的经验中,对象生成之后可以直接赋给一个接口,编译器会自动将指针偏移到接口处。但如果反过来,将一个接口赋给一个对象却是不允许的,因为信息不足啊,任何类都可以实现这个接口,编译器并不知道这个接口是由那个类实现的,所以就无从转换了。如果我们提供一个现实该接口的类,再根据该类的VMT中的接口信息,就可以得到IOffset了,如此一来不就可以偏移到对象的首地址了吗,下面的例程可以从一个接口得到实现该接口的对象,前提是必须提供实现这个接口的类:

functionGetObjFromIntf(AClass:TClass;constIntf:IInterface):TObject;
var
PIntfTable:PInterfaceTable;
IntfEntry:TInterfaceEntry;
i:Integer;
begin
Result:=nil;
//取得接口表结构
PIntfTable:=AClass.GetInterfaceTable;
ifPIntfTable=nilthenExit;
whileAClass<>nildo
begin
fori:=0toPIntfTable^.EntryCount-1do
begin
IntfEntry:=PIntfTable^.Entries[i];
//判断接口表指向的地址是否和传入接口指向的地址相同
ifPPointer(Intf)^=IntfEntry.VTablethen
begin

//偏移到对象首地址
Result:=TObject(Integer(Intf)-IntfEntry.IOffset);
Exit;
end;
end;
//继续在父类中找
AClass:=AClass.ClassParent;
end;
end;

看下面例子:

var
Intf:Itest2;
Obj:TTest;
begin
Intf:=TTest.Create;
Intf.SayHello2;
Obj:=TTest(GetObjFromIntf(TTest,Intf));
Obj.SayHello1;
end;

执行上面代码,先弹出Hello2的对话框,再弹出Hello1的对象,说明GetObjFromIntf函数执行成功,我们实现了从接口到对象的转换过程。

接口的引用计数

上面接口的内存空间与COM的接口在二进制上是兼容的,即接口就是一个指向VTable的指针,与COM兼容的还有另一个特性,就是通过引用计数自动管理COM对象的生命周期。C++程序员必须手工去管理引用计数的增减,而Delphi编译器帮我们做了这些事情,因为引用计数是有规律,只要遵循这些规律,便能自动管理引用计数的增减。IInterface的声明如下:

IInterface = interface

['{00000000-0000-0000-C000-000000000046}']

function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;

function _AddRef: Integer; stdcall;

function _Release: Integer; stdcall;

end;

任何实现IInterface的类都必须实现上面三个方法,其中的_AddRef_Release就是实现引用计数管理的。Delphi提供了IInterfaceObject类默认实现Interface,它声明一个成员


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap