• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Matlab实现基于频域对一维信号利用傅里叶低通滤波平滑

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

基于频域的低通滤波(一维信号——灰度图的灰度级频数分布曲线)

算法分析

  1. 求灰度图的的灰度级频数。绘制出频数分布曲线(一维信号)
  2. 将一维信号从空域转到频域。对步骤1中的灰度级频数分布曲线进行傅里叶变换
  3. 过滤高频信号。在频域中将高频信号置0,只保留低频信号(通过fft函数傅里叶变换之后,高频点分布在频谱中间,低频信号分布在频谱两端)
  4. 利用傅里叶反变换将频域反变换回空域,经过傅里叶平滑后的频数分布曲线变得更光滑连续

伪代码

A = 读入灰度图像
[H,W] = 图像A的大小
cnt = 存放图像A的灰度级频数
统计每个像素值出现次数
绘制A的频数分布     
AF = 进行傅里叶变换(调用fft函数),得到此一维信号在频域中的频谱
AF(11:256-9) = 在频域中将除前10个和后10个低频信号的高频信号置0
AI = 进行傅里叶反变换(调用ifft函数),将经过低通滤波的一维信号反变换回空域

%绘制经过傅里叶平滑后的A的频数分布曲线,加上红色以示区分

BF = 傅里叶变换,得到频域中的频谱    
BF(31:256-29) = 在频域中将一维信号中间高频信号置为0,两端各保留30个低频信号  
BI = 将低通滤波之后的信号傅里叶反变换,从频域转到空域
%绘制傅里叶平滑后的频数分布曲线,加上绿色与上一步骤的平滑曲线对比

代码

A = imread(\'cameraman.tif\');
[a b] = imhist(A);  %a是图像A的灰度级频数,b是对应的灰度级
figure,plot(a);     %绘制A的频数分布
AF = fft(a);        %傅里叶变换(空域转频域)
AF(11:256-9) = 0;   %在频域中去掉除前10个和后10个低频信号的高频频数直方图信号
AI = ifft(AF);      %傅里叶反变换(频域转空域)
hold on;plot(AI,\'r\');   %绘制经过傅里叶变换后的A的频数直方图
BF = fft(a);            %
BF(31:256-29) = 0;      %保留前30个和后30个低频信号
BI = ifft(BF);    
hold on;plot(BI,\'g\');   %与上一个变换后直方图对比

实验结果

  • 红色曲线是保留前后各保留10个低频信号得到的结果,绿色曲线是前后各保留20个低频信号得到的结果

  • 实验结果证明,保留更多的低频信号,经过傅里叶平滑后得到结果与原图灰度级频数分布越接近


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
UsingGenericcontainersinDelphiXE-always?发布时间:2022-07-18
下一篇:
DelphiTXLSReadWriteII2带的demo中edit的例子发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap