Matlab均匀性度量法实现图像二值化 %homogeneity clc clear all; F=imread(\'cameraman.tif\'); subplot(121),imshow(F);title(\'Original\'); % subplot(222),imhist(Image);title(\' histogram\'); %Initial threshold F=double(F); minValue=min(min(F)); maxValue=max(max(F)); [row,col]=size(F); Th=minValue+1; %给定初始阈值 perfactValue=10000000000; %假设初始为无穷大 for m=minValue+1:maxValue-1 k1=1;k2=1; for i=1:row for j=1:col if F(i,j)<m C1(1,k1)=F(i,j);k1=k1+1; %C1类 else C2(1,k2)=F(i,j);k2=k2+1; %C2类 end end end %对C1类求均值,方差,分布概率 average1=mean(C1); %均值1 variance1=0; for i=1:k1-1 variance1=variance1+(C1(1,i)-average1)^2; %C1类的方差 end variance1 = variance1/(k1-1); p1=(k1-1)/(row*col); %C1类的分布概率 %对C2类求均值,方差,分布概率 average2=mean(C2); %均值2 variance2=0; for i=1:k2-1 variance2=variance2+(C2(1,i)-average2)^2; %C2类的方差 end p2=(k2-1)/(row*col); %C2类的分布概率 variance2 = variance2/(k2-1); newValue=p1*variance1+p2*variance2; if (newValue<perfactValue) Th=m; perfactValue=newValue; end end % Th=82; for i=1:row for j=1:col if F(i,j) >= Th G(i,j)=255; else G(i,j)=0; end end end subplot(122),imshow(G);title(\'segmentation\');