• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

matlab实现K-means聚类算法(转载)

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

https://blog.csdn.net/wys7541/article/details/82153844

 

K-means聚类算法的一般步骤:

  1. 初始化。输入基因表达矩阵作为对象集X,输入指定聚类类数N,并在X中随机选取N个对象作为初始聚类中心。设定迭代中止条件,比如最大循环次数或者聚类中心收敛误差容限。
  2. 进行迭代。根据相似度准则将数据对象分配到最接近的聚类中心,从而形成一类。初始化隶属度矩阵。
  3. 更新聚类中心。然后以每一类的平均向量作为新的聚类中心,重新分配数据对象。
  4. 反复执行第二步和第三步直至满足中止条件。

下面来看看K-means是如何工作的:

图中圆形为聚类中心,方块为待聚类数据,步骤如下:

 (a)选取聚类中心,可以任意选取,也可以通过直方图进行选取。我们选择三个聚类中心,并将数据样本聚到离它最近的中心;

 (b)数据中心移动到它所在类别的中心;

 (c)数据点根据最邻近规则重新聚到聚类中心;

 (d)再次更新聚类中心;不断重复上述过程直到评价标准不再变化

评价标准:

           

K-means面临的问题以及解决办法:

1.它不能保证找到定位聚类中心的最佳方案,但是它能保证能收敛到某个解决方案(不会无限迭代)。

   解决方法:多运行几次K-means,每次初始聚类中心点不同,最后选择方差最小的结果。

2.它无法指出使用多少个类别。在同一个数据集中,例如上图例,选择不同初始类别数获得的最终结果是不同的。

    解决方法:首先设类别数为1,然后逐步提高类别数,在每一个类别数都用上述方法,一般情况下,总方差会很快下降,直到到达一个拐点;这意味着再增加一个聚类中心不会显著减少方差,保存此时的聚类数。

 

MATLAB函数Kmeans

使用方法:
Idx=kmeans(X,K)

[Idx,C]=kmeans(X,K) 

[Idx,C,sumD]=kmeans(X,K) 

[Idx,C,sumD,D]=kmeans(X,K) 

[…]=kmeans(…,’Param1’,Val1,’Param2’,Val2,…)

各输入输出参数介绍:
X: N*P的数据矩阵,N为数据个数,P为单个数据维度
K: 表示将X划分为几类,为整数
Idx: N*1的向量,存储的是每个点的聚类标号
C: K*P的矩阵,存储的是K个聚类质心位置
sumD: 1*K的和向量,存储的是类间所有点与该类质心点距离之和
D: N*K的矩阵,存储的是每个点与所有质心的距离

[…]=Kmeans(…,\'Param1\',Val1,\'Param2\',Val2,…)
这其中的参数Param1、Param2等,主要可以设置为如下:
1. ‘Distance’(距离测度)
    ‘sqEuclidean’ 欧式距离(默认时,采用此距离方式)
    ‘cityblock’ 绝度误差和,又称:L1
    ‘cosine’ 针对向量
    ‘correlation’  针对有时序关系的值
    ‘Hamming’ 只针对二进制数据
2. ‘Start’(初始质心位置选择方法)
    ‘sample’ 从X中随机选取K个质心点
    ‘uniform’ 根据X的分布范围均匀的随机生成K个质心
    ‘cluster’ 初始聚类阶段随机选择10%的X的子样本(此方法初始使用’sample’方法)
     matrix 提供一K*P的矩阵,作为初始质心位置集合
3. ‘Replicates’(聚类重复次数)  整数

 

案例一:

%随机获取150个点
X = [randn(50,2)+ones(50,2);randn(50,2)-ones(50,2);randn(50,2)+[ones(50,1),-ones(50,1)]];
opts = statset(\'Display\',\'final\');
 
%调用Kmeans函数
%X N*P的数据矩阵
%Idx N*1的向量,存储的是每个点的聚类标号
%Ctrs K*P的矩阵,存储的是K个聚类质心位置
%SumD 1*K的和向量,存储的是类间所有点与该类质心点距离之和
%D N*K的矩阵,存储的是每个点与所有质心的距离;
 
[Idx,Ctrs,SumD,D] = kmeans(X,3,\'Replicates\',3,\'Options\',opts);
 
%画出聚类为1的点。X(Idx==1,1),为第一类的样本的第一个坐标;X(Idx==1,2)为第二类的样本的第二个坐标
plot(X(Idx==1,1),X(Idx==1,2),\'r.\',\'MarkerSize\',14)
hold on
plot(X(Idx==2,1),X(Idx==2,2),\'b.\',\'MarkerSize\',14)
hold on
plot(X(Idx==3,1),X(Idx==3,2),\'g.\',\'MarkerSize\',14)
 
%绘出聚类中心点,kx表示是圆形
plot(Ctrs(:,1),Ctrs(:,2),\'kx\',\'MarkerSize\',14,\'LineWidth\',4)
plot(Ctrs(:,1),Ctrs(:,2),\'kx\',\'MarkerSize\',14,\'LineWidth\',4)
plot(Ctrs(:,1),Ctrs(:,2),\'kx\',\'MarkerSize\',14,\'LineWidth\',4)
 
legend(\'Cluster 1\',\'Cluster 2\',\'Cluster 3\',\'Centroids\',\'Location\',\'NW\')
 
Ctrs
SumD

 

结果图片:

%K-means聚类
clc,clear;
load tyVector;
X=tyVector\';    %列向量变成行向量,209*180矩阵
[x,y]=size(X);
opts = statset(\'Display\',\'final\');
K=11;           %将X划分为K类
repN=50;        %迭代次数
 
%K-mean聚类
[Idx,Ctrs,SumD,D] = kmeans(X,K,\'Replicates\',repN,\'Options\',opts);
%Idx N*1的向量,存储的是每个点的聚类标号
 
%打印结果
fprintf(\'划分成%d类的结果如下:\n\',K)
for i=1:K
    tm=find(Idx==i); %求第i类的对象
    tm=reshape(tm,1,length(tm)); %变成行向量
    fprintf(\'第%d类共%d个分别是%s\n\',i,length(tm),int2str(tm)); %显示分类结果
end

 


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Matlab实现K-Means聚类算法发布时间:2022-07-18
下一篇:
DelphiXE2之FireMonkey入门(2)发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap