一、代数多项式法:
1 tic; 2 clear 3 clc 4 % N=input(\'please key in the value of \'\'N\'\'\'); 5 N=10; 6 M=100; 7 h=1/M; 8 X=0:h:1; 9 accurate_fun=inline(\'x.^2 - (2*exp(x))/(exp(1) + 1) - (2*exp(-x)*exp(1))/(exp(1) + 1) + 2\'); 10 f=inline(\'x.^2-x\'); 11 phi=inline(\'x.*(1-x).*x.^(i-1)\',\'i\',\'x\'); 12 diff_phi=inline(\'i*x.^(i-1)-(i+1)*x.^i\',\'i\',\'x\'); 13 for j=1:N 14 for i=1:N 15 A(i,j)=quad(@(x)phi(i,x).*phi(j,x)+diff_phi(i,x).*diff_phi(j,x),0,1); 16 end 17 b(j,1)=quad(@(x) phi(j,x).*f(x),0,1); 18 end 19 C=A\b; 20 syms x; 21 Un=0; 22 for i=1:N 23 Un=Un+C(i)*phi(i,x); 24 end 25 Un=Un+x; 26 numerical= double(vpa(subs(Un,\'x\',X))); 27 accurate=accurate_fun(X); 28 subplot(1,2,1) 29 plot(X,numerical,\'r -\',X,accurate,\'b >\'); 30 title(\'numerical VS accurate\'); 31 legend(\'numerical\',\'accurate\'); 32 grid on; 33 subplot(1,2,2); 34 plot(X,numerical-accurate,\'g\'); 35 title(\'error\'); 36 grid on; 37 toc;
二、三角函数法:
1 tic; 2 clear 3 clc 4 % N=input(\'please key in the value of \'\'N\'\'\'); 5 N=10; 6 M=100; 7 h=1/M; 8 X=0:h:1; 9 accurate_fun=inline(\'x.^2 - (2*exp(x))/(exp(1) + 1) - (2*exp(-x)*exp(1))/(exp(1) + 1) + 2\'); 10 f=inline(\'x.^2-x\'); 11 phi=inline(\'sin(i*pi*x)\',\'i\',\'x\'); 12 diff_phi=inline(\'i*pi*cos(i*pi*x)\',\'i\',\'x\'); 13 for j=1:N 14 for i=1:N 15 A(i,j)=quad(@(x)phi(i,x).*phi(j,x)+diff_phi(i,x).*diff_phi(j,x),0,1); 16 end 17 b(j,1)=quad(@(x) phi(j,x).*f(x),0,1); 18 end 19 C=A\b; 20 syms x; 21 Wn=0; 22 for i=1:N 23 Wn=Wn+C(i)*phi(i,x); 24 end 25 Un=Wn+x; 26 numerical=vpa(subs(Un,\'x\',X)); 27 accurate=accurate_fun(X); 28 subplot(1,2,1) 29 plot(X,numerical,\'r -\',X,accurate,\'g ^\'); 30 title(\'Ritz Galerkin method\'); 31 legend(\'numerical solution\',\'accurate solution\'); 32 grid on; 33 subplot(1,2,2) 34 plot(X,numerical-accurate,\'b\'); 35 title(\'error\'); 36 grid on; 37 toc;