题目太长啦!文档下载【传送门】
第1题
简述:设计一个5*5的单位矩阵。
function A = warmUpExercise() A = []; A = eye(5); end
运行结果:
第2题
简述:实现单变量线性回归。
第1步:加载数据文件;
data = load(\'ex1data1.txt\'); X = data(:, 1); y = data(:, 2); m = length(y); % number of training examples % Plot Data % Note: You have to complete the code in plotData.m plotData(X, y);
第2步:plotData函数实现训练样本的可视化;
function plotData(x, y) figure; plot(x,y,\'rx\',\'MarkerSize\',10); ylabel(\'Profit in $10,000s\'); xlabel(\'Population of City in 10,000s\'); end
第3步:使用梯度下降函数计算局部最优解,并显示线性回归;
X = [ones(m, 1), data(:,1)]; % Add a column of ones to x theta = zeros(2, 1); % initialize fitting parameters % Some gradient descent settings iterations = 1500; alpha = 0.01; % run gradient descent theta = gradientDescent(X, y, theta, alpha, iterations); % print theta to screen fprintf(\'Theta found by gradient descent:\n\'); fprintf(\'%f\n\', theta); % Plot the linear fit hold on; % keep previous plot visible plot(X(:,2), X*theta, \'-\') legend(\'Training data\', \'Linear regression\') hold off % don\'t overlay any more plots on this figure
第4步:实现梯度下降gradientDescent函数;
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters) % Initialize some useful values m = length(y); % number of training examples J_history = zeros(num_iters, 1); for iter = 1:num_iters theta = theta - alpha/length(y)*(X\'*(X*theta-y)); % Save the cost J in every iteration J_history(iter) = computeCost(X, y, theta); end end
第5步:实现代价计算computeCost函数;
function J = computeCost(X, y, theta) m = length(y); % number of training examples J = 1/(2*m)*sum((X*theta-y).^2); end
第6步:实现三维图、轮廓图的显示。
% Grid over which we will calculate J theta0_vals = linspace(-10, 10, 100); theta1_vals = linspace(-1, 4, 100); % initialize J_vals to a matrix of 0\'s J_vals = zeros(length(theta0_vals), length(theta1_vals)); % Fill out J_vals for i = 1:length(theta0_vals) for j = 1:length(theta1_vals) t = [theta0_vals(i); theta1_vals(j)]; J_vals(i,j) = computeCost(X, y, t); end end % Because of the way meshgrids work in the surf command, we need to % transpose J_vals before calling surf, or else the axes will be flipped J_vals = J_vals\'; % Surface plot figure; surf(theta0_vals, theta1_vals, J_vals); xlabel(\'\theta_0\'); ylabel(\'\theta_1\'); % Contour plot figure; % Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100 contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20)) xlabel(\'\theta_0\'); ylabel(\'\theta_1\'); hold on; plot(theta(1), theta(2), \'rx\', \'MarkerSize\', 10, \'LineWidth\', 2);
运行结果:
第3题
简述:实现多元线性回归。
第1步:加载数据文件;
data = load(\'ex1data2.txt\'); X = data(:, 1:2); y = data(:, 3); m = length(y); [X mu sigma] = featureNormalize(X); % Add intercept term to X X = [ones(m, 1) X];
第2步:均值归一化featureNormalize函数实现;
function [X_norm, mu, sigma] = featureNormalize(X) X_norm = X; mu = zeros(1, size(X, 2)); sigma = zeros(1, size(X, 2)); mu = mean(X,1); sigma = std(X,0,1); X_norm = (X_norm-mu)./sigma; end
第3步:使用梯度下降函数计算局部最优解,并显示线性回归;
% Choose some alpha value alpha = 0.05; num_iters = 100; % Init Theta and Run Gradient Descent theta = zeros(3, 1); [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters); % Plot the convergence graph figure; plot(1:numel(J_history), J_history, \'-b\', \'LineWidth\', 2); xlabel(\'Number of iterations\'); ylabel(\'Cost J\');
第4步:实现梯度下降gradientDescentMulti函数;
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters) m = length(y); % number of training examples J_history = zeros(num_iters, 1); for iter = 1:num_iters theta = theta - alpha/m*(X\'*(X*theta-y)); % Save the cost J in every iteration J_history(iter) = computeCostMulti(X, y, theta); end end
第5步:实现代价计算computeCostMulti函数;
function J = computeCostMulti(X, y, theta) m = length(y); % number of training examples J = 1/(2*m)*sum((X*theta-y).^2);%J=(X*theta-y)\'*(X*theta-y)/(2*m); end
运行结果:
第6步:使用上述结果对“the price of a 1650 sq-ft, 3 br house”进行预测;
X1 = [1,1650,3]; X1(2:3) = (X1(2:3)-mu)./sigma; price = X1*theta;
预测结果:
第7步:使用正规方程法求解;
%%Load Data data = csvread(\'ex1data2.txt\'); X = data(:, 1:2); y = data(:, 3); m = length(y); % Add intercept term to X X = [ones(m, 1) X]; % Calculate the parameters from the normal equation theta = normalEqn(X, y);
第8步:实现normalEqn函数;
function [theta] = normalEqn(X, y) theta = zeros(size(X, 2), 1); theta = (X\'*X)^(-1)*X\'*y; end
第9步:使用上述结果对“the price of a 1650 sq-ft, 3 br house”再次进行预测;
price = [1,1650,3]*theta;
预测结果:(与梯度下降法结果很接近)
请发表评论