• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

机器学习作业(五)机器学习算法的选择与优化——Matlab实现 ...

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

题目下载【传送门

第1步:读取数据文件,并可视化:

% Load from ex5data1: 
% You will have X, y, Xval, yval, Xtest, ytest in your environment
load (\'ex5data1.mat\');

% m = Number of examples
m = size(X, 1);

% Plot training data
plot(X, y, \'rx\', \'MarkerSize\', 10, \'LineWidth\', 1.5);
xlabel(\'Change in water level (x)\');
ylabel(\'Water flowing out of the dam (y)\');

运行结果:

 

第2步:实现linearRegCostFunction函数,采用线性回归和正规化求 J 和 grad:

function [J, grad] = linearRegCostFunction(X, y, theta, lambda)

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;
grad = zeros(size(theta));

theta_copy = theta;
theta_copy(1, :) = 0
J = 1 / (2 * m) * sum((X * theta - y) .^ 2) + lambda / (2 * m) * sum(theta_copy .^ 2);
grad = 1 / m * (X\' * (X * theta - y)) + lambda / m * theta_copy;

grad = grad(:);

end

 

第3步:实现训练函数trainLinearReg:

function [theta] = trainLinearReg(X, y, lambda)

% Initialize Theta
initial_theta = zeros(size(X, 2), 1); 

% Create "short hand" for the cost function to be minimized
costFunction = @(t) linearRegCostFunction(X, y, t, lambda);

% Now, costFunction is a function that takes in only one argument
options = optimset(\'MaxIter\', 200, \'GradObj\', \'on\');

% Minimize using fmincg
theta = fmincg(costFunction, initial_theta, options);

end

 

使用 lambda = 0,测试结果:

%  Train linear regression with lambda = 0
lambda = 0;
[theta] = trainLinearReg([ones(m, 1) X], y, lambda);

%  Plot fit over the data
plot(X, y, \'rx\', \'MarkerSize\', 10, \'LineWidth\', 1.5);
xlabel(\'Change in water level (x)\');
ylabel(\'Water flowing out of the dam (y)\');
hold on;
plot(X, [ones(m, 1) X]*theta, \'--\', \'LineWidth\', 2)
hold off;

运行结果:很显然,采用 y = θ0 + θ1x 欠拟合。

 

第4步:绘制关于训练集数量的学习曲线,在lambda = 0 的情况下,观察训练集的大小1 ~ m给训练误差和验证误差的影响:

lambda = 0;
[error_train, error_val] = ...
    learningCurve([ones(m, 1) X], y, ...
                  [ones(size(Xval, 1), 1) Xval], yval, ...
                  lambda);

plot(1:m, error_train, 1:m, error_val);
title(\'Learning curve for linear regression\')
legend(\'Train\', \'Cross Validation\')
xlabel(\'Number of training examples\')
ylabel(\'Error\')
axis([0 13 0 150])

 

其中学习曲线函数learningCurve:

function [error_train, error_val] = ...
    learningCurve(X, y, Xval, yval, lambda)

for i = 1:m,
    X_temp = X(1:i, :);
    y_temp = y(1:i);
    theta = trainLinearReg(X_temp, y_temp, lambda);
    error_train(i) = 1 / (2 * i) * sum((X_temp * theta - y_temp) .^ 2);
    error_val(i) = 1 / (2 * m) * sum((Xval * theta - yval) .^ 2);
end

end

运行结果:随着训练集的扩大,训练误差和验证误差均比较大,是高误差问题(欠拟合)。

 

第5步:为了解决欠拟合问题,需要改进特征,下面对训练、交叉验证、测试三组数据进行特征扩充和均值归一化:

p = 8;

% Map X onto Polynomial Features and Normalize
X_poly = polyFeatures(X, p);
[X_poly, mu, sigma] = featureNormalize(X_poly);  % Normalize
X_poly = [ones(m, 1), X_poly];                   % Add Ones

% Map X_poly_test and normalize (using mu and sigma)
X_poly_test = polyFeatures(Xtest, p);
X_poly_test = bsxfun(@minus, X_poly_test, mu);
X_poly_test = bsxfun(@rdivide, X_poly_test, sigma);
X_poly_test = [ones(size(X_poly_test, 1), 1), X_poly_test];         % Add Ones

% Map X_poly_val and normalize (using mu and sigma)
X_poly_val = polyFeatures(Xval, p);
X_poly_val = bsxfun(@minus, X_poly_val, mu);
X_poly_val = bsxfun(@rdivide, X_poly_val, sigma);
X_poly_val = [ones(size(X_poly_val, 1), 1), X_poly_val];           % Add Ones

fprintf(\'Normalized Training Example 1:\n\');
fprintf(\'  %f  \n\', X_poly(1, :));

 

其中ployFeatures函数实现特征值扩充的作用:

function [X_poly] = polyFeatures(X, p)

% You need to return the following variables correctly.
X_poly = zeros(numel(X), p);

X_poly(:, 1) = X(:, 1);
for i = 2:p,
    X_poly(:, i) = X_poly(:, i-1) .* X(:, 1);
end

end

 

其中featureNormalize函数实现均值归一化功能:

function [X_norm, mu, sigma] = featureNormalize(X)

mu = mean(X);
X_norm = bsxfun(@minus, X, mu);

sigma = std(X_norm);
X_norm = bsxfun(@rdivide, X_norm, sigma);

end

 

第6步:设置不同的lambda,查看拟合结果和学习曲线:

lambda = 0;
[theta] = trainLinearReg(X_poly, y, lambda);

% Plot training data and fit
figure(1);
plot(X, y, \'rx\', \'MarkerSize\', 10, \'LineWidth\', 1.5);
plotFit(min(X), max(X), mu, sigma, theta, p);
xlabel(\'Change in water level (x)\');
ylabel(\'Water flowing out of the dam (y)\');
title (sprintf(\'Polynomial Regression Fit (lambda = %f)\', lambda));

figure(2);
[error_train, error_val] = ...
    learningCurve(X_poly, y, X_poly_val, yval, lambda);
plot(1:m, error_train, 1:m, error_val);

title(sprintf(\'Polynomial Regression Learning Curve (lambda = %f)\', lambda));
xlabel(\'Number of training examples\')
ylabel(\'Error\')
axis([0 13 0 100])
legend(\'Train\', \'Cross Validation\')

(1)lambda = 0的情况:过拟合

 

(2)lambda = 1的情况:过拟合

 

(3)lambda = 100的情况:欠拟合

 

 

第7步:绘制关于lambda的学习曲线,选择最优的lambda:

[lambda_vec, error_train, error_val] = ...
    validationCurve(X_poly, y, X_poly_val, yval);

close all;
plot(lambda_vec, error_train, lambda_vec, error_val);
legend(\'Train\', \'Cross Validation\');
xlabel(\'lambda\');
ylabel(\'Error\');

 

其中validationCurve函数:

function [lambda_vec, error_train, error_val] = ...
    validationCurve(X, y, Xval, yval)

m = size(X, 1)
for i = 1:size(lambda_vec),
    lambda = lambda_vec(i);
    theta = trainLinearReg(X, y, lambda);
    error_train(i) = 1 / (2 * m) * sum((X * theta - y) .^ 2);
    error_val(i) = 1 / (2 * m) * sum((Xval * theta - yval) .^ 2);
end

end

运行结果:可以看出,在lambda在[2, 3]上有较好的效果。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Matlab+GPU加速学习笔记(一)发布时间:2022-07-18
下一篇:
Delphi完整的Bug决议工具EurekaLog的使用发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap