深度自编码器(Deep Autoencoder)MATLAB解读
作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/
这篇文章主要讲解Hinton在2006年Science上提出的一篇文章“Reducing the dimensionality of data with neural networks”的主要思想与MATLAB程序解读。
完整代码见参考文献[2]!!!
深度自编码器首先用受限玻尔兹曼机进行逐层预训练,得到初始的权值与偏置(权值与偏置的更新过程用对比散度CD-1算法)。然后,自编码得到重构数据,通过BP算法进行全局微调权值与偏置(权值与偏置的更新过程用Polak-Ribiere共轭梯度法)。
1. mnistdeepauto.m
%% 自编码器网络结构:784->1000->500->250->30->250->500->1000->784 clear all close all maxepoch=50; %In the Science paper we use maxepoch=50, but it works just fine. 最大迭代数 numhid=1000; numpen=500; numpen2=250; numopen=30;%rbm每层神经元个数1000-500-250-30 %% 数据预处理 %转换数据格式 fprintf(1,\'Converting Raw files into Matlab format \n\'); converter; %50个来回迭代 fprintf(1,\'Pretraining a deep autoencoder. \n\'); fprintf(1,\'The Science paper used 50 epochs. This uses %3i \n\', maxepoch); %对数据进行批处理 makebatches; [numcases numdims numbatches]=size(batchdata);%每批样本数、维度、批数 %% 逐层预训练阶段(用RBM) %%可见层->1000隐含层 fprintf(1,\'Pretraining Layer 1 with RBM: %d-%d \n\',numdims,numhid); restart=1; rbm; %0、1变量 输出权值与偏置的初始更新值 hidrecbiases=hidbiases; save mnistvh vishid hidrecbiases visbiases;%保存第1个rbm的权值、隐含层偏置项、可视化层偏置项,为mnistvh.mat 784*1000 1*1000 1*784 %%1000隐含层->500隐含层 fprintf(1,\'\nPretraining Layer 2 with RBM: %d-%d \n\',numhid,numpen); batchdata=batchposhidprobs; numhid=numpen; restart=1; rbm; %0、1变量 输出权值与偏置的初始更新值 hidpen=vishid; penrecbiases=hidbiases; hidgenbiases=visbiases; save mnisthp hidpen penrecbiases hidgenbiases;%保存第2个rbm的权值、隐含层偏置项、可视化层偏置项,为mnisthp.mat 1000*500 1*500 1*1000 %%500隐含层->250隐含层 fprintf(1,\'\nPretraining Layer 3 with RBM: %d-%d \n\',numpen,numpen2); batchdata=batchposhidprobs; numhid=numpen2; restart=1; rbm; %0、1变量 输出权值与偏置的初始更新值 hidpen2=vishid; penrecbiases2=hidbiases; hidgenbiases2=visbiases; save mnisthp2 hidpen2 penrecbiases2 hidgenbiases2;%保存第3个rbm的权值、隐含层偏置项、可视化层偏置项,为mnisthp2.mat 500*250 1*250 1*500 %250隐含层->30隐含层 fprintf(1,\'\nPretraining Layer 4 with RBM: %d-%d \n\',numpen2,numopen); batchdata=batchposhidprobs; numhid=numopen; restart=1; rbmhidlinear; %激活函数为f(x)=x,实值变量 输出权值与偏置的初始更新值 hidtop=vishid; toprecbiases=hidbiases; topgenbiases=visbiases; save mnistpo hidtop toprecbiases topgenbiases;%保存第4个rbm的权值、隐含层偏置项、可视化层偏置项,为mnistpo.mat 250*30 1*30 1*250 %% BP全局调参 backprop; %微调权值与偏置
2. converter.m
%%将gz格式转为matlab的文件格式 %实现的功能是将样本集从.ubyte格式转换成.ascii格式,然后继续转换成.mat格式。 % % 作用:把测试数据集和训练数据集转换为.mat格式 % 最终得到的测试数据集:test(0~9).mat % 最终得到的训练数据集:digit(0~9).mat % %% 首先转换测试数据集的格式 Work with test files first fprintf(1,\'You first need to download files:\n train-images-idx3-ubyte.gz\n train-labels-idx1-ubyte.gz\n t10k-images-idx3-ubyte.gz\n t10k-labels-idx1-ubyte.gz\n from http://yann.lecun.com/exdb/mnist/\n and gunzip them \n\'); %该文件前四个32位的数字是数据信息 magic number, number of image, number of rows, number of columns f = fopen(\'t10k-images-idx3-ubyte\',\'r\'); [a,count] = fread(f,4,\'int32\'); %该文件前两个32位的数字是数据信息 magic number, number of image g = fopen(\'t10k-labels-idx1-ubyte\',\'r\'); [l,count] = fread(g,2,\'int32\'); fprintf(1,\'Starting to convert Test MNIST images (prints 10 dots) \n\'); n = 1000; %Df中存的是.ascii文件代号 Df = cell(1,10); for d=0:9, Df{d+1} = fopen([\'test\' num2str(d) \'.ascii\'],\'w\'); end; %一次从测试集(1w)中读入1000个图片和标签 rawlabel 1000*1 rawimages 784*1000 for i=1:10, fprintf(\'.\'); rawimages = fread(f,28*28*n,\'uchar\'); rawlabels = fread(g,n,\'uchar\'); rawimages = reshape(rawimages,28*28,n); %在对应文档中输入图片的01值(3个整数位)换行 for j=1:n, fprintf(Df{rawlabels(j)+1},\'%3d \',rawimages(:,j)); fprintf(Df{rawlabels(j)+1},\'\n\'); end; end; fprintf(1,\'\n\'); for d=0:9, fclose(Df{d+1}); D = load([\'test\' num2str(d) \'.ascii\'],\'-ascii\');%读取.ascii 中的数据D=内包含样本数*784 fprintf(\'%5d Digits of class %d\n\',size(D,1),d); save([\'test\' num2str(d) \'.mat\'],\'D\',\'-mat\');%转化为.mat文件 end; % 然后转换训练数据集的格式 Work with trainig files second f = fopen(\'train-images-idx3-ubyte\',\'r\'); [a,count] = fread(f,4,\'int32\'); g = fopen(\'train-labels-idx1-ubyte\',\'r\'); [l,count] = fread(g,2,\'int32\'); fprintf(1,\'Starting to convert Training MNIST images (prints 60 dots)\n\'); n = 1000; Df = cell(1,10); for d=0:9, Df{d+1} = fopen([\'digit\' num2str(d) \'.ascii\'],\'w\'); end; for i=1:60, fprintf(\'.\'); rawimages = fread(f,28*28*n,\'uchar\'); rawlabels = fread(g,n,\'uchar\'); rawimages = reshape(rawimages,28*28,n); for j=1:n, fprintf(Df{rawlabels(j)+1},\'%3d \',rawimages(:,j)); fprintf(Df{rawlabels(j)+1},\'\n\'); end; end; fprintf(1,\'\n\'); for d=0:9, fclose(Df{d+1}); D = load([\'digit\' num2str(d) \'.ascii\'],\'-ascii\'); fprintf(\'%5d Digits of class %d\n\',size(D,1),d); save([\'digit\' num2str(d) \'.mat\'],\'D\',\'-mat\'); end; dos(\'rm *.ascii\');%删除中间文件.ascii
3. makebatches.m
%把数据集及其标签进行打包或分批,方便以后分批进行处理,因为数据太大了,这样可加快学习速率 %实现的是将原本的2维数据集变成3维的,因为分了多个批次,另外1维表示的是批次。 % 作用:把数据集及其标签进行分批,方便以后分批进行处理,因为数据太大了,分批处理可加快学习速率 % 训练数据集及标签的打包结果:batchdata、batchtargets % 测试数据集及标签的打包结果:testbatchdata、testbatchtargets digitdata=[]; targets=[]; %训练集中数字0的样本load 将文件中的所有数据加载D上;digitdata大小样本数*784,target大小样本数*10 load digit0; digitdata = [digitdata; D]; targets = [targets; repmat([1 0 0 0 0 0 0 0 0 0], size(D,1), 1)]; load digit1; digitdata = [digitdata; D]; targets = [targets; repmat([0 1 0 0 0 0 0 0 0 0], size(D,1), 1)]; load digit2; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 1 0 0 0 0 0 0 0], size(D,1), 1)]; load digit3; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 1 0 0 0 0 0 0], size(D,1), 1)]; load digit4; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 1 0 0 0 0 0], size(D,1), 1)]; load digit5; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 1 0 0 0 0], size(D,1), 1)]; load digit6; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 1 0 0 0], size(D,1), 1)]; load digit7; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 0 1 0 0], size(D,1), 1)]; load digit8; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 0 0 1 0], size(D,1), 1)]; load digit9; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 0 0 0 1], size(D,1), 1)]; digitdata = digitdata/255;%累加起来并且进行归一化 totnum=size(digitdata,1);%样本数60000 fprintf(1, \'Size of the training dataset= %5d \n\', totnum); rand(\'state\',0); %so we know the permutation of the training data 打乱顺序 randomorder内有60000个不重复的数字 randomorder=randperm(totnum); numbatches=totnum/100;%批数:600 numdims = size(digitdata,2);%维度 784 batchsize = 100;%每批样本数 100 batchdata = zeros(batchsize, numdims, numbatches);%100*784*600 batchtargets = zeros(batchsize, 10, numbatches);%100*10*600 for b=1:numbatches %打乱了进行存储还存在两个数组batchdata,batchtargets中 batchdata(:,:,b) = digitdata(randomorder(1+(b-1)*batchsize:b*batchsize), :); batchtargets(:,:,b) = targets(randomorder(1+(b-1)*batchsize:b*batchsize), :); end; clear digitdata targets; digitdata=[]; targets=[]; load test0; digitdata = [digitdata; D]; targets = [targets; repmat([1 0 0 0 0 0 0 0 0 0], size(D,1), 1)]; load test1; digitdata = [digitdata; D]; targets = [targets; repmat([0 1 0 0 0 0 0 0 0 0], size(D,1), 1)]; load test2; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 1 0 0 0 0 0 0 0], size(D,1), 1)]; load test3; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 1 0 0 0 0 0 0], size(D,1), 1)]; load test4; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 1 0 0 0 0 0], size(D,1), 1)]; load test5; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 1 0 0 0 0], size(D,1), 1)]; load test6; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 1 0 0 0], size(D,1), 1)]; load test7; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 0 1 0 0], size(D,1), 1)]; load test8; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 0 0 1 0], size(D,1), 1)]; load test9; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 0 0 0 1], size(D,1), 1)]; digitdata = digitdata/255; totnum=size(digitdata,1); fprintf(1, \'Size of the test dataset= %5d \n\', totnum); rand(\'state\',0); %so we know the permutation of the training data randomorder=randperm(totnum); numbatches=totnum/100; numdims = size(digitdata,2); batchsize = 100; testbatchdata = zeros(batchsize, numdims, numbatches); testbatchtargets = zeros(batchsize, 10, numbatches); for b=1:numbatches testbatchdata(:,:,b) = digitdata(randomorder(1+(b-1)*batchsize:b*batchsize), :); testbatchtargets(:,:,b) = targets(randomorder(1+(b-1)*batchsize:b*batchsize), :); end; clear digitdata targets; %%% Reset random seeds rand(\'state\',sum(100*clock)); randn(\'state\',sum(100*clock));
4. rbmhidlinear.m
% maxepoch -- maximum number of epochs % numhid -- number of hidden units % batchdata -- the data that is divided into batches (numcases numdims numbatches) % restart -- set to 1 if learning starts from beginning %可视、二进制、随机像素连接到隐藏的、由单位方差高斯函数绘制的、平均值由逻辑可见单元输入决定的、符号型的实值特征检测器。 % 作用:训练最顶层的一个RBM 250->30 % 输出层神经元的激活函数为1,是线性的,不再是sigmoid函数,所以该函数名字叫:rbmhidlinear.m epsilonw = 0.001; % Learning rate for weights epsilonvb = 0.001; % Learning rate for biases of visible units epsilonhb = 0.001; % Learning rate for biases of hidden units weightcost = 0.0002; initialmomentum = 0.5; finalmomentum = 0.9; [numcases numdims numbatches]=size(batchdata); if restart ==1 restart=0; epoch=1; % Initializing symmetric weights and biases. vishid = 0.1*randn(numdims, numhid); hidbiases = zeros(1,numhid); visbiases = zeros(1,numdims); poshidprobs = zeros(numcases,numhid); neghidprobs = zeros(numcases,numhid); posprods = zeros(numdims,numhid); negprods = zeros(numdims,numhid); vishidinc = zeros(numdims,numhid); hidbiasinc = zeros(1,numhid); visbiasinc = zeros(1,numdims); sigmainc = zeros(1,numhid); batchposhidprobs=zeros(numcases,numhid,numbatches); end for epoch = epoch:maxepoch fprintf(1,\'epoch %d\r\',epoch); errsum=0; for batch = 1:numbatches fprintf(1,\'epoch %d batch %d\r\',epoch,batch); %%%%%%%%% START POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% data = batchdata(:,:,batch); poshidprobs = (data*vishid) + repmat(hidbiases,numcases,1);% 样本第一次正向传播时隐含层节点的输出值,即:p(hj=1|v0)=Wji*v0+bj ,因为输出层激活函数为1 batchposhidprobs(:,:,batch)=poshidprobs;%将输出存入一个三位数组 posprods = data\' * poshidprobs;%p(h|v0)*v0 更新权重时会使用到 计算正向梯度vh\' poshidact = sum(poshidprobs);%隐藏层中神经元概率和,在更新隐藏层偏置时会使用到 posvisact = sum(data);%可视层中神经元概率和,在更新可视层偏置时会使用到 %%%%%%%%% END OF POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%gibbs采样 输出实数 poshidstates = poshidprobs+randn(numcases,numhid);% h0:非概率密度,而是01后的实值 %%%%%%%%% START NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% negdata = 1./(1 + exp(-poshidstates*vishid\' - repmat(visbiases,numcases,1))); neghidprobs = (negdata*vishid) + repmat(hidbiases,numcases,1);%p(hj=1|v1)=Wji*v1+bj, neghidprobs表示样本第二次正向传播时隐含层节点的输出值,即:p(hj=1|v1) negprods = negdata\'*neghidprobs; neghidact = sum(neghidprobs); negvisact = sum(negdata); %%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% err= sum(sum( (data-negdata).^2 )); errsum = err + errsum; if epoch>5 momentum=finalmomentum; else momentum=initialmomentum; end %%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vishidinc = momentum*vishidinc + ... epsilonw*( (posprods-negprods)/numcases - weightcost*vishid); visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact); hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact); vishid = vishid + vishidinc; visbiases = visbiases + visbiasinc; hidbiases = hidbiases + hidbiasinc; %%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end fprintf(1, \'epoch %4i error %f \n\', epoch, errsum); end
5. backprop.m
%四个RBM连接起来进行,使用BP训练数据进行参数的微调整 maxepoch=200; fprintf(1,\'\nFine-tuning deep autoencoder by minimizing cross entropy error. \n\'); fprintf(1,\'60 batches of 1000 cases each. \n\'); %加载参数:权值与偏置 load mnistvh %第1个rbm的权值、隐含层偏置项、可视化层偏置项1000 v->h(1000) load mnisthp %第二个 1000->500 load mnisthp2 %第三个 500->250 load mnistpo %第四个 250->30 %数据分批 makebatches; [numcases numdims numbatches]=size(batchdata); N=numcases; %样本数个数 %%%% PREINITIALIZE WEIGHTS OF THE AUTOENCODER 预初始化自动编码器的权重%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w1=[vishid; hidrecbiases]; %v->h(1000)权值和偏置(1000) (784+1)*1000 w2=[hidpen; penrecbiases]; %1000->500权值和偏置(500) 1001*500 w3=[hidpen2; penrecbiases2]; %500->250权值和偏置(250) 501*250 w4=[hidtop; toprecbiases]; %250->30权值与偏置(30) 251*30 w5=[hidtop\'; topgenbiases]; %30->250权值与偏置(30) 31*250 w6=[hidpen2\'; hidgenbiases2]; %250->500权值与偏置(250) 251*500 w7=[hidpen\'; hidgenbiases]; %500->1000权值与偏置(500) 501*1000 w8=[vishid\'; visbiases]; %1000->可见层权值与偏置(1000) 1001*784 %%%%%%%%%% END OF PREINITIALIZATIO OF WEIGHTS 权重预初始化结束%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l1=size(w1,1)-1; %每层节点个数 784 l2=size(w2,1)-1; %1000 l3=size(w3,1)-1; %500 l4=size(w4,1)-1; %250 l5=size(w5,1)-1; %30 l6=size(w6,1)-1; %250 l7=size(w7,1)-1; %500 l8=size(w8,1)-1; %1000 l9=l1; %输入层与输出层节点个数相同 784 test_err=[]; train_err=[]; for epoch = 1:maxepoch %重复迭代maxepoch次 %%%%%%%%%%%%%%%%%%%% COMPUTE TRAINING RECONSTRUCTION ERROR 计算训练重构误差%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% err=0; [numcases numdims numbatches]=size(batchdata);%每批样本数、维度、批数 N=numcases; for batch = 1:numbatches %按匹计算重构误差,最后求平均 data = [batchdata(:,:,batch)]; %100*784 data = [data ones(N,1)]; %每个样本再加一个维度1 是因为w1里既包含权值又包含偏置 100*785 w1probs = 1./(1 + exp(-data*w1)); w1probs = [w1probs ones(N,1)]; %(100*(784+1))*(785*1000)=100*1000; w1probs:100*1001;%正向传播,计算每一层的输出概率密度p(h|v),且同时在输出上增加一维(值为常量1) w2probs = 1./(1 + exp(-w1probs*w2)); w2probs = [w2probs ones(N,1)]; %(100*1001)*(1001*500)=100*500; w2probs:100*501; w3probs = 1./(1 + exp(-w2probs*w3)); w3probs = [w3probs ones(N,1)]; %(100*501)*(501*250)=100*250; w3probs:100*251; w4probs = w3probs*w4; w4probs = [w4probs ones(N,1)]; %(100*251)*(251*30)=100*30; w4probs:100*31;% 第5层神经元激活函数为1,而不是logistic函数 w5probs = 1./(1 + exp(-w4probs*w5)); w5probs = [w5probs ones(N,1)]; %(100*31)*(31*250)=100*250; w5probs:100*251; w6probs = 1./(1 + exp(-w5probs*w6)); w6probs = [w6probs ones(N,1)]; %(100*251)*(251*500)=100*500; w6probs:100*501; w7probs = 1./(1 + exp(-w6probs*w7)); w7probs = [w7probs ones(N,1)]; %(100*501)*(501*1000)=100*1000; w7probs:100*1001; dataout = 1./(1 + exp(-w7probs*w8)); %(100*1001)*(1001*784)=100*784;% 输出层的输出概率密度,即:重构数据的概率密度,也即:重构数据 err= err + 1/N*sum(sum( (data(:,1:end-1)-dataout).^2 )); %剔除掉最后一维 err=∑(∑(||H-X||^2))/N;% 每个batch内的均方误差 end train_err(epoch)=err/numbatches; %第epoch轮平均训练误差% 迭代第epoch次的所有样本内的均方误差 %%%%%%%%%%%%%% END OF COMPUTING TRAINING RECONSTRUCTION ERROR 训练重构误差计算结束%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% DISPLAY FIGURE TOP ROW REAL DATA BOTTOM ROW RECONSTRUCTIONS 显示真实的和重构后的数据 %%%%%%%%%%%%%%%%%%%%%%%%% fprintf(1,\'Displaying in figure 1: Top row - real data, Bottom row -- reconstructions \n\'); %上面一行是真实数据,下面一行是重构数据 output=[]; for ii=1:15 %每次显示15组图片 output = [output data(ii,1:end-1)\' dataout(ii,:)\']; %两列真实数据和重构后的数据%output为15(因为是显示15个数字)组,每组2列,分别为理论值和重构值 end if epoch==1 close all figure(\'Position\',[100,600,1000,200]); else figure(1) end mnistdisp(output); %画图 展示一组图 drawnow; %%%%%%%%%%%%%%%%%%%% COMPUTE TEST RECONSTRUCTION ERROR 计算测试重构误差%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [testnumcases testnumdims testnumbatches]=size(testbatchdata);%批数% [100 784 100] 测试数据为100个batch,每个batch含100个测试样本,每个样本维数为784 N=testnumcases; err=0; for batch = 1:testnumbatches data = [testbatchdata(:,:,batch)]; data = [data ones(N,1)]; w1probs = 1./(1 + exp(-data*w1)); w1probs = [w1probs ones(N,1)]; w2probs = 1./(1 + exp(-w1probs*w2)); w2probs = [w2probs ones(N,1)]; w3probs = 1./(1 + exp(-w2probs*w3)); w3probs = [w3probs ones(N,1)]; w4probs = w3probs*w4; w4probs = [w4probs ones(N,1)]; %没有把4个RBM展开前输出层神经元(即:第4个rbm的隐含层神经元)的激活函数是f(x)=x,而不是原来的logistic函数。所以把4个RBM展开并连接起来变为9层神经网络后,它的第5层神经元的激活函数仍然是f(x)=x。 w5probs = 1./(1 + exp(-w4probs*w5)); w5probs = [w5probs ones(N,1)]; w6probs = 1./(1 + exp(-w5probs*w6)); w6probs = [w6probs ones(N,1)]; w7probs = 1./(1 + exp(-w6probs*w7)); w7probs = [w7probs ones(N,1)]; dataout = 1./(1 + exp(-w7probs*w8)); %输出层的输出概率密度=重构数据的概率密度=重构数据 err = err + 1/N*sum(sum( (data(:,1:end-1)-dataout).^2 )); end test_err(epoch)=err/testnumbatches; fprintf(1,\'Before epoch %d Train squared error: %6.3f Test squared error: %6.3f \t \t \n\',epoch,train_err(epoch),test_err(epoch)); %%%%%%%%%%%%%% END OF COMPUTING TEST RECONSTRUCTION ERROR 测试重构误差计算结束%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%组合数据的batches大小由原来的100*600的mini-batches变为1000*60的larger-batches tt=0; for batch = 1:numbatches/10% 训练样本:批数numbatches是600,每个batch内100个样本,组合后变为批数60,每个batch1000个样本 fprintf(1,\'epoch %d batch %d\r\',epoch,batch); %%%%%%%%%%% COMBINE 10 MINIBATCHES INTO 1 LARGER MINIBATCH 将10个小批合并为1个较大的小批%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tt=tt+1; data=[]; for kk=1:10 data=[data batchdata(:,:,(tt-1)*10+kk)]; %将10个100行数据连成一行%使训练数据变为60个batch,每个batch内含1000个样本 end %%%%%%%%%%%%%%% PERFORM CONJUGATE GRADIENT WITH 3 LINESEARCHES 共轭梯度%%%%%%%%%%%%%%%%%%%%%%%%%%%%% max_iter=3; %3次线性搜索 % VV将权值偏置矩阵展成一个长长的列向量 VV = [w1(:)\' w2(:)\' w3(:)\' w4(:)\' w5(:)\' w6(:)\' w7(:)\' w8(:)\']\'; %将所有的权值和偏置合并为1列% 把所有权值(已经包括了偏置值)变成一个大的列向量 Dim = [l1; l2; l3; l4; l5; l6; l7; l8; l9]; %所有结点 每层节点个数% 每层网络对应节点的个数(不包括偏置值) [X, fX] = minimize(VV,\'CG_MNIST\',max_iter,Dim,data);%实现共轭梯度% X为3次线性搜索最优化后得到的权值参数,是一个列向量 %VV是权值偏置 CG_MNIST输出的是代价函数和偏导 结点 数据 % 将VV列向量重新还原成矩阵 w1 = reshape(X(1:(l1+1)*l2),l1+1,l2); %(l1+1)*l2 (784+1)*1000 xxx = (l1+1)*l2; w2 = reshape(X(xxx+1:xxx+(l2+1)*l3),l2+1,l3); xxx = xxx+(l2+1)*l3; w3 = reshape(X(xxx+1:xxx+(l3+1)*l4),l3+1,l4); xxx = xxx+(l3+1)*l4; w4 = reshape(X(xxx+1:xxx+(l4+1)*l5),l4+1,l5); xxx = xxx+(l4+1)*l5; w5 = reshape(X(xxx+1:xxx+(l5+1)*l6),l5+1,l6); xxx = xxx+(l5+1)*l6; w6 = reshape(X(xxx+1:xxx+(l6+1)*l7),l6+1,l7); xxx = xxx+(l6+1)*l7; w7 = reshape(X(xxx+1:xxx+(l7+1)*l8),l7+1,l8); xxx = xxx+(l7+1)*l8; w8 = reshape(X(xxx+1:xxx+(l8+1)*l9),l8+1,l9);%依次重新赋值为优化后的参数 %%%%%%%%%%%%%%% END OF CONJUGATE GRADIENT WITH 3 LINESEARCHES %%%%%%%%%%%%%%%%%%%%%%%%%%%%% end save mnist_weights w1 w2 w3 w4 w5 w6 w7 w8 save mnist_error test_err train_err; end
6. CG_MNIST.m
%该函数实现的功能是计算网络代价函数值f,以及f对网络中各个参数值的偏导数df,权值和偏置值是同时处理。 %其中参数VV为网络中所有参数构成的列向量,参数Dim为每层网络的节点数构成的向量,XX为训练样本集合。f和df分别表示网络的代价函数和偏导函数值。 %得代价函数和对权值的偏导数 function [f, df] = CG_MNIST(VV,Dim,XX) %权值,结点,输入数据 % f :代价函数,即交叉熵误差 -1/N*∑∑(X*log(H)+(1-X)*log(1-H)) % df :代价函数对各权值的偏导数 % VV:权值(已经包括了偏置值),为一个大的列向量 用预训练初始的权值与偏置 % Dim:每层网络对应节点的个数 % XX:训练样本 % f :代价函数,即交叉熵误差 % df :代价函数对各权值的偏导数 l1 = Dim(1);%各层节点个数(不包括偏置值) 784 l2 = Dim(2); %1000 l3 = Dim(3); %500 l4= Dim(4); %250 l5= Dim(5); %30 l6= Dim(6); %250 l7= Dim(7); %500 l8= Dim(8); %1000 l9= Dim(9); %784 N = size(XX,1);% 样本的个数 % Do decomversion. 权值矩阵化 w1 = reshape(VV(1:(l1+1)*l2),l1+1,l2); %依次取出每层的权值和偏置% VV是一个长的列向量,它包括偏置值和权值,这里取出的向量已经包括了偏置值 785*1000 xxx = (l1+1)*l2;%xxx 表示已经使用了的长度 w2 = reshape(VV(xxx+1:xxx+(l2+1)*l3),l2+1,l3); %1001*500 xxx = xxx+(l2+1)*l3; w3 = reshape(VV(xxx+1:xxx+(l3+1)*l4),l3+1,l4); %501*250 xxx = xxx+(l3+1)*l4; w4 = reshape(VV(xxx+1:xxx+(l4+1)*l5),l4+1,l5); %251*30 xxx = xxx+(l4+1)*l5; w5 = reshape(VV(xxx+1:xxx+(l5+1)*l6),l5+1,l6); %31*250 xxx = xxx+(l5+1)*l6; w6 = reshape(VV(xxx+1:xxx+(l6+1)*l7),l6+1,l7); %251*500 xxx = xxx+(l6+1)*l7; w7 = reshape(VV(xxx+1:xxx+(l7+1)*l8),l7+1,l8); %501*1000 xxx = xxx+(l7+1)*l8; w8 = reshape(VV(xxx+1:xxx+(l8+1)*l9),l8+1,l9); %1001*784 XX = [XX ones(N,1)];% 训练样本,加1维使其下可乘w1 w1probs = 1./(1 + exp(-XX*w1)); w1probs = [w1probs ones(N,1)]; w2probs = 1./(1 + exp(-w1probs*w2)); w2probs = [w2probs ones(N,1)]; w3probs = 1./(1 + exp(-w2probs*w3)); w3probs = [w3probs ones(N,1)]; w4probs = w3probs*w4; w4probs = [w4probs ones(N,1)];% 第5层神经元激活函数为1,而不是logistic函数 w5probs = 1./(1 + exp(-w4probs*w5)); w5probs = [w5probs ones(N,1)]; w6probs = 1./(1 + exp(-w5probs*w6)); w6probs = [w6probs ones(N,1)]; w7probs = 1./(1 + exp(-w6probs*w7)); w7probs = [w7probs ones(N,1)]; XXout = 1./(1 + exp(-w7probs*w8)); %输出的概率密度% 输出层的概率密度,也就是重构数据 %看邱锡鹏: 神经网络与深度学习 P100 %计算每一层参数的导数 f = -1/N*sum(sum( XX(:,1:end-1).*log(XXout) + (1-XX(:,1:end-1)).*log(1-XXout))); %代价函数交叉熵 -1/N*∑∑(X*log(H)+(1-X)*log(1-H)) IO = 1/N*(XXout-XX(:,1:end-1)); %误差项 Ix8=IO;% 相当于输出层“残差” dw8 = w7probs\'*Ix8; %向后推导输出层偏导 W8的偏导=激活值(f(aW+b))\'*残差项 Ix7 = (Ix8*w8\').*w7probs.*(1-w7probs); %第七层残差 Ix7 = Ix7(:,1:end-1); %误差项 dw7 = w6probs\'*Ix7; %第七层偏导=激活值(f(aW+b))\'*残差项 Ix6 = (Ix7*w7\').*w6probs.*(1-w6probs); Ix6 = Ix6(:,1:end-1); %误差项 dw6 = w5probs\'*Ix6; Ix5 = (Ix6*w6\').*w5probs.*(1-w5probs); Ix5 = Ix5(:,1:end-1); dw5 = w4probs\'*Ix5; Ix4 = (Ix5*w5\'); Ix4 = Ix4(:,1:end-1); dw4 = w3probs\'*Ix4; Ix3 = (Ix4*w4\').*w3probs.*(1-w3probs); Ix3 = Ix3(:,1:end-1); dw3 = w2probs\'*Ix3; Ix2 = (Ix3*w3\').*w2probs.*(1-w2probs); Ix2 = Ix2(:,1:end-1); dw2 = w1probs\'*Ix2; Ix1 = (Ix2*w2\').*w1probs.*(1-w1probs); Ix1 = Ix1(:,1:end-1); dw1 = XX\'*Ix1; df = [dw1(:)\' dw2(:)\' dw3(:)\' dw4(:)\' dw5(:)\' dw6(:)\' dw7(:)\' dw8(:)\' ]\'; %网络代价函数的偏导数
7. rbm.m 和 minimize.m
rbm.m程序在受限玻尔兹曼机(Restricted Boltzmann Machine)中详细阐述了,minimize.m程序在minimize.m:共轭梯度法更新BP算法权值中详细阐述了。
8. 实验结果
9. 参考文献
[1] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507.
[2] Hinton, Training a deep autoencoder or a classifier on MNIST digits.
[3] Hinton, Supporting Online Material.
[4] 邱锡鹏, 神经网络与深度学习[M]. 2019.