原理:
PSO(粒子群群算法):可以在全局范围内进行大致搜索,得到一个初始解,以便BP接力
BP(神经网络):梯度搜素,细化能力强,可以进行更仔细的搜索。
数据:对该函数((2.1*(1-x+2*x.^2).*exp(-x.^2/2))+sin(x)+x\',\'x\')[-5,5]进行采样,得到30组训练数据,拟合该网络。
神经网络结构设置: 该网络结构为,1-7-1结构,即输入1个神经元,中间神经元7个,输出1个神经元
程序步骤:
第一步:先采用抽取30组数据,包括输入和输出
第一步:运行粒子群算法,进行随机搜索,选择一个最优的解,该解的维数为22维。
第二步:在;粒子群的解基础上进行细化搜索
程序代码:
clc clear tic SamNum=30; HiddenNum=7; InDim=1; OutDim=1; load train_x load train_f a=train_x\'; d=train_f\'; p=[a]; t=[d]; [SamIn,minp,maxp,tn,mint,maxt]=premnmx(p,t); NoiseVar=0.01; Noise=NoiseVar*randn(1,SamNum); SamOut=tn + Noise; SamIn=SamIn\'; SamOut=SamOut\'; MaxEpochs=60000; lr=0.025; E0=0.65*10^(-6); %% %the begin of PSO E0=0.001; Max_num=500; particlesize=200; c1=1; c2=1; w=2; vc=2; vmax=5; dims=InDim*HiddenNum+HiddenNum+HiddenNum*OutDim+OutDim; x=-4+7*rand(particlesize,dims); v=-4+5*rand(particlesize,dims); f=zeros(particlesize,1); %% for jjj=1:particlesize trans_x=x(jjj,:); W1=zeros(InDim,HiddenNum); B1=zeros(HiddenNum,1); W2=zeros(HiddenNum,OutDim); B2=zeros(OutDim,1); W1=trans_x(1,1:HiddenNum); B1=trans_x(1,HiddenNum+1:2*HiddenNum)\'; W2=trans_x(1,2*HiddenNum+1:3*HiddenNum)\'; B2=trans_x(1,3*HiddenNum+1); Hiddenout=logsig(SamIn*W1+repmat(B1\',SamNum,1)); Networkout=Hiddenout*W2+repmat(B2\',SamNum,1); Error=Networkout-SamOut; SSE=sumsqr(Error) f(jjj)=SSE; end personalbest_x=x; personalbest_f=f; [groupbest_f i]=min(personalbest_f); groupbest_x=x(i,:); for j_Num=1:Max_num vc=(5/3*Max_num-j_Num)/Max_num; %% v=w*v+c1*rand*(personalbest_x-x)+c2*rand*(repmat(groupbest_x,particlesize,1)-x); for kk=1:particlesize for kk0=1:dims if v(kk,kk0)>vmax v(kk,kk0)=vmax; else if v(kk,kk0)<-vmax v(kk,kk0)=-vmax; end end end end x=x+vc*v; %% for jjj=1:particlesize trans_x=x(jjj,:); W1=zeros(InDim,HiddenNum); B1=zeros(HiddenNum,1); W2=zeros(HiddenNum,OutDim); B2=zeros(OutDim,1); W1=trans_x(1,1:HiddenNum); B1=trans_x(1,HiddenNum+1:2*HiddenNum)\'; W2=trans_x(1,2*HiddenNum+1:3*HiddenNum)\'; B2=trans_x(1,3*HiddenNum+1); Hiddenout=logsig(SamIn*W1+repmat(B1\',SamNum,1)); Networkout=Hiddenout*W2+repmat(B2\',SamNum,1); Error=Networkout-SamOut; SSE=sumsqr(Error); f(jjj)=SSE; end %% for kk=1:particlesize if f(kk)<personalbest_f(kk) personalbest_f(kk)=f(kk); personalbest_x(kk)=x(kk); end end [groupbest_f0 i]=min(personalbest_f); if groupbest_f0<groupbest_f groupbest_x=x(i,:); groupbest_f=groupbest_f0; end ddd(j_Num)=groupbest_f end str=num2str(groupbest_f); trans_x=groupbest_x; W1=trans_x(1,1:HiddenNum); B1=trans_x(1,HiddenNum+1:2*HiddenNum)\'; W2=trans_x(1,2*HiddenNum+1:3*HiddenNum)\'; B2=trans_x(1,3*HiddenNum+1); %the end of PSO %% for i=1:MaxEpochs %% Hiddenout=logsig(SamIn*W1+repmat(B1\',SamNum,1)); Networkout=Hiddenout*W2+repmat(B2\',SamNum,1); Error=Networkout-SamOut; SSE=sumsqr(Error) ErrHistory=[ SSE]; if SSE<E0,break, end dB2=zeros(OutDim,1); dW2=zeros(HiddenNum,OutDim); for jj=1:HiddenNum for k=1:SamNum dW2(jj,OutDim)=dW2(jj,OutDim)+Error(k)*Hiddenout(k,jj); end end for k=1:SamNum dB2(OutDim,1)=dB2(OutDim,1)+Error(k); end dW1=zeros(InDim,HiddenNum); dB1=zeros(HiddenNum,1); for ii=1:InDim for jj=1:HiddenNum for k=1:SamNum dW1(ii,jj)=dW1(ii,jj)+Error(k)*W2(jj,OutDim)*Hiddenout(k,jj)*(1-Hiddenout(k,jj))*(SamIn(k,ii)); dB1(jj,1)=dB1(jj,1)+Error(k)*W2(jj,OutDim)*Hiddenout(k,jj)*(1-Hiddenout(k,jj)); end end end W2=W2-lr*dW2; B2=B2-lr*dB2; W1=W1-lr*dW1; B1=B1-lr*dB1; end Hiddenout=logsig(SamIn*W1+repmat(B1\',SamNum,1)); Networkout=Hiddenout*W2+repmat(B2\',SamNum,1); aa=postmnmx(Networkout,mint,maxt); x=a; newk=aa; figure plot(x,d,\'r-o\',x,newk,\'b--+\') legend(\'原始数据\',\'训练后的数据\'); xlabel(\'x\');ylabel(\'y\'); toc
注:在(i5,8G,win7,64位)PC上的运行时间为30s左右。鉴于PSO带有概率性,可以多跑几次,看最佳的一次效果。