在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
图2.11a比较了指数函数、四自由度chisquare函数、二自由度非中心chi-square函数、威布尔函数和对数正态密度函数,这些函数的RCS方差均为0.5。 Figure 2.11a compares the exponential, fourth-degreechisquare, second-degree non-central chi-square, Weibull, and log-normaldensity functions when all have an RCS variance of 0.5.
因此,指数分布的平均值为0.5。 The exponentialdistribution then necessarily has a mean of 0.5. 四自由度chi-square函数的平均值为1.0,其它密度函数的平均值也应当选择为1.0。 The fourth-degreechi-square necessarily has a mean of 1.0, and the parameters of the remainingdensity functions have been chosen to give them a mean of 1.0 as well. 图2.11b以半对数刻度重复描绘了相同的数据,这样PDF的拖尾特征就更加明显了。 Figure 2.11b repeatsthe same data on a semilogarithmic scale so that the behavior of the PDF"tails" is more evident. 注意,威布尔和二自由度非中心chi-square分布对于这种参数的选择是非常相似的。 Note that the Weibulland second-degree non-central chi-square distributions are very similar forthis choice of parameters. chi-square分布也是相似的,但该分布的拖尾相对较小。 The chi-square isalso similar, but has a somewhat less extensive tail to the distribution. 对数正态分布既有最窄的峰值范围,也有最长的拖尾。 The log-normal hasboth the narrowest peak and the longest tail of any of the distributions shownfor this choice of parameters. 与所有其它的分布函数不同,指数分布在平均RCS附近没有明显的峰值。 Unlike all of theothers, the exponential does not have a distinct peak near the mean RCS. 其它分布都有一个明显的峰值,这使得它们适合于描述一个或几个主要散射体的RCS特征。 Each of the othersdoes have a distinct peak, making them suitable for distributions with one or afew dominant scatterers. ——本文译自Mark A. Richards所著的《Fundamentals of Radar Signal Processing(Second edition)》 更多精彩文章请关注微信号: |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论