from:http://blog.sina.com.cn/s/blog_736aa0540101kzqb.html
clc; clear; close all;
% Haar-like特征矩形计算
board = 24 % 检测窗口宽度
num = 24 % 检测窗口分划数
show = 1; % 1为作图
time = 0.001; % 作图间隔
%%
if mod(board,num)~=0
error(\'检测窗口宽度必须是分划数的整数倍\')
else
delta = board/num % 滑动步进值
end
%% Haar特征1:左白,右黑,(s,t)=(1,2)
s = 1;
t = 2;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
\'---- Haar特征1:左白,右黑,(s,t)=(1,2) ---\'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口宽
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 列方向移动个数
Px0 = [0 r]; % 矩形坐标初始化
Py0 = [0 c/2 c];
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)\',1,2),\'k\'); hold on;
plot(repmat((0:delta:board)\',1,2),[0 board],\'k\'); axis tight; axis square;
title(\'Haar矩形遍历演示\');xlabel(\'x\');ylabel(\'y\');
plot(Px,repmat(Py\',1,2),\'r\',\'LineWidth\',5)
plot(repmat(Px,2,1),repmat([Py(1) Py(end)]\',1,2),\'r\',\'LineWidth\',5); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征2:上白,下黑,(s,t)=(2,1)
s = 2;
t = 1;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
\'---- Haar特征2:上白,下黑,(s,t)=(2,1) ---\'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口宽
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 列方向移动个数
Px0 = [0 r/2 r]; % 矩形坐标初始化
Py0 = [0 c];
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)\',1,2),\'k\'); hold on;
plot(repmat((0:delta:board)\',1,2),[0 board],\'k\'); axis tight; axis square;
title(\'Haar矩形遍历演示\');xlabel(\'x\');ylabel(\'y\');
plot(repmat(Px,2,1),repmat(Py\',1,length(Px)),\'r\',\'LineWidth\',3);
plot(repmat([Px(1) Px(end)]\',1,2),repmat(Py,2,1),\'r\',\'LineWidth\',3); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征3:左右白,中间黑,(s,t)=(1,3)
s = 1;
t = 3;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
\'---- Haar特征3:左右白,中间黑,(s,t)=(1,3) ---\'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口宽
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 列方向移动个数
Px0 = [0 r]; % 矩形坐标初始化
Py0 = [0 c/3 c*2/3 c];
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)\',1,2),\'k\'); hold on;
plot(repmat((0:delta:board)\',1,2),[0 board],\'k\'); axis tight; axis square;
title(\'Haar矩形遍历演示\');xlabel(\'x\');ylabel(\'y\');
plot(Px,repmat(Py\',1,2),\'r\',\'LineWidth\',5)
plot(repmat(Px,2,1),repmat([Py(1) Py(end)]\',1,2),\'r\',\'LineWidth\',5); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征4:左右白,中间黑(2倍宽度),(s,t)=(1,4)
s = 1;
t = 4;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
\'---- Haar特征4:左右白,中间黑(2倍宽度),(s,t)=(1,4) ---\'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口宽
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 列方向移动个数
Px0 = [0 r]; % 矩形坐标初始化
Py0 = [0 c/4 c*3/4 c];
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)\',1,2),\'k\'); hold on;
plot(repmat((0:delta:board)\',1,2),[0 board],\'k\'); axis tight; axis square;
title(\'Haar矩形遍历演示\');xlabel(\'x\');ylabel(\'y\');
plot(Px,repmat(Py\',1,2),\'r\',\'LineWidth\',5)
plot(repmat(Px,2,1),repmat([Py(1) Py(end)]\',1,2),\'r\',\'LineWidth\',5); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征5:上下白,中间黑,(s,t)=(3,1)
s = 3;
t = 1;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
\'---- Haar特征5:上下白,中间黑,(s,t)=(3,1) ---\'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口宽
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 列方向移动个数
Px0 = [0 r/3 r*2/3 r]; % 矩形坐标初始化
Py0 = [0 c];
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)\',1,2),\'k\'); hold on;
plot(repmat((0:delta:board)\',1,2),[0 board],\'k\'); axis tight; axis square;
title(\'Haar矩形遍历演示\');xlabel(\'x\');ylabel(\'y\');
plot(repmat(Px,2,1),repmat(Py\',1,length(Px)),\'r\',\'LineWidth\',3);
plot(repmat([Px(1) Px(end)]\',1,2),repmat(Py,2,1),\'r\',\'LineWidth\',3); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征6:上下白,中间黑(2倍宽度),(s,t)=(4,1)
s = 4;
t = 1;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
\'---- Haar特征6:上下白,中间黑(2倍宽度),(s,t)=(4,1) ---\'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口宽
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 列方向移动个数
Px0 = [0 r/4 r*3/4 r]; % 矩形坐标初始化
Py0 = [0 c];
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)\',1,2),\'k\'); hold on;
plot(repmat((0:delta:board)\',1,2),[0 board],\'k\'); axis tight; axis square;
title(\'Haar矩形遍历演示\');xlabel(\'x\');ylabel(\'y\');
plot(repmat(Px,2,1),repmat(Py\',1,length(Px)),\'r\',\'LineWidth\',3);
plot(repmat([Px(1) Px(end)]\',1,2),repmat(Py,2,1),\'r\',\'LineWidth\',3); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征7:左上右下白,其它黑,(s,s)=(2,2)
s = 2;
t = 2;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
\'---- Haar特征7:左上右下白,其它黑,(s,s)=(2,2) ---\'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口高
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 行方向移动个数
Px0 = [0 r/2 r]; % 矩形坐标初始化
Py0 = [0 c/2 c]; % 矩形坐标初始化
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)\',1,2),\'k\'); hold on;
plot(repmat((0:delta:board)\',1,2),[0 board],\'k\'); axis tight; axis square;
title(\'Haar矩形遍历演示\');xlabel(\'x\');ylabel(\'y\');
plot(repmat(Px,3,1),repmat(Py\',1,length(Px)),\'r\',\'LineWidth\',3);
plot(repmat([Px(1) Px(end)]\',1,3),repmat(Py,2,1),\'r\',\'LineWidth\',3); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征8:四周白,中间黑,(s,s)=(3,3)
s = 3;
t = 3;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
\'---- Haar特征8:四周白,中间黑,(s,s)=(3,3) ---\'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口高
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 行方向移动个数
Px0 = [0 r/3 r*2/3 r]; % 矩形坐标初始化
Py0 = [0 c/3 c*2/3 c]; % 矩形坐标初始化
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)\',1,2),\'k\'); hold on;
plot(repmat((0:delta:board)\',1,2),[0 board],\'k\'); axis tight; axis square;
title(\'Haar矩形遍历演示\');xlabel(\'x\');ylabel(\'y\');
plot(repmat(Px,4,1),repmat(Py\',1,length(Px)),\'r\',\'LineWidth\',3);
plot(repmat([Px(1) Px(end)]\',1,4),repmat(Py,2,1),\'r\',\'LineWidth\',3); hold off
pause(time)
end
end
end
end
end
NUM
% 毕业院校:海军工程大学,水声工程专业,博士
% 精通方向:数字信号(图像、视频)处理,人工智能与模式识别,群体智能优化,非线性与混沌,支持向量机,Matlab与VC++混编
% 现任岗位:沈阳聚德视频技术有限公司,图像处理及模式识别研发工程师
% 工作职责:车牌识别,视频目标跟踪等算法开发,C/C++实现,DSP植入
% 兴趣爱好:金融时序的程式化交易
%
% 主要成果:
% [1] 实现车牌识别C/C实现,DSP植入,识别率:汉字不低于99%,数字字母不低于99.5%,整牌不低于97%
% [2] 精通数字信号(图像、视频)“特征提取”与“模式识别”的研究与开发,开展了“支持向量机”应用研究,原创文章有《四种支持向量机工具箱使用要点》,独立开发了“支持向量机Matlab工具箱Version1.0”。结题项目有:语音信号处理与识别,遥感图像的特征提取与分类,人脸识别,主被动声纳信号处理与识别等
% [3] 精通“群体智能优化”,原创工具箱有“群体智能算法”Matlab工具箱 Version2.0”,误差精度优于现有公开发表文献,工程中解决了各种高维复杂问题的优化计算
% [4] 精通“时间序列混沌建模和预测”,基于Matlab和VC 混编平台,独立开发了混沌分析和预测软件包“混沌时间序列分析与预测工具箱 Version2.9”。结题项目有:金融数据波动性分析与程式化交易,银行反洗钱异常检测系统,混沌背景弱信号检测,海洋混响背景弱目标检测等
% [5] 精通Matlab与VC 混合编程:(a)以VC 为界面,核心算法采用Matlab函数,原创文章有《如何将Matlab7.0函数转换成VC 6.0动态链接库》;(b)以Matlab为界面,耗时算法在VC 环境中采用Mexfunction编译。
%
% 联系方式
电子邮件:[email protected]