• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

MATLAB 损失函数画图

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

损失函数画图

  • Hinge loss function:

\[H(z) = max(0,1-z)\]

  • $\psi$-learning loss function: 

\[{\phi _s}(z) = \left\{ {\begin{array}{*{20}{c}}
s&{z < 0}\\
0&{z \ge 0}
\end{array}} \right.\]

  • Normalized Sigmoid loss:

\[{P_t}(z) = 1 - \tanh (tz)\]

  • Ramp loss function:

\[{R_s}(z) = \left\{ {\begin{array}{*{20}{c}}
0&{z > 0}\\
{1 - z}&{0 \le z \le 1}\\
{1 - s}&{z > 1}
\end{array}} \right.\]

 

%plot loss function

%define the loss function
H = @(z)max(0,1-z) ; %Hinge loss function
P = @(z)(2*(z<0)+0*(z>=0)); %\psi-learning loss function
S = @(z)(1-tanh(2*z)); %Normalized Sigmoid loss function
R = @(z)(1*(z<0)+(1-z).*(z>=0&z<1)+0*(z>=1)); % ramp loss

z=-2:0.01:2;
subplot(1,4,1) % plot the 1st figure of 1-4
plot(z,H(z),\'-\',\'linewidth\',2);
xlabel(\'z\');
title(\'Hinge loss\',\'fontweight\',\'normal\',\'fontsize\',10);
axis([-2,2 0 3])

subplot(1,4,2)
plot(z,P(z),\'g-\',\'linewidth\',2);
xlabel(\'z\');
title(\'\psi-learnig loss\',\'fontweight\',\'normal\',\'fontsize\',10);
axis([-2,2 0 3])

subplot(1,4,3)
plot(z,S(z),\'r-\',\'linewidth\',2);
xlabel(\'z\');
title(\'Normalized Sigmoid loss\',\'fontweight\',\'normal\',\'fontsize\',10);
axis([-2,2 0 3])

subplot(1,4,4)
plot(z,R(z),\'b-\',\'linewidth\',2);
xlabel(\'z\');
title(\'Ramp loss\',\'fontweight\',\'normal\',\'fontsize\',10);
axis([-2,2 0 3])

  


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap