• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

matlab简单实现SVD的推荐

原作者: [db:作者] 来自: [db:来源] 收藏 邀请
%svd chengxu 

A = [5 5 0 5;5 0 3 4; 3 4 0 3; 0 0 5 3; 5 4 4 5; 5 4 5 5];
A = A';

[U S V] = svd(A);

U = U(:,1:4);
S = S(1:4,1:4);
V = V(:,1:4);

reA = U*S*V';

%give one new user

bob = [5 5 0 0 0 5];

uservector = bob*V*S;

for i = 1:1:size(A,1)
    temp = U(i,:);
    similarity = temp*uservector'/(sqrt(temp*temp')*sqrt(uservector*uservector'));
    userlist(i) = similarity;
end

rank = sort(userlist);
l = size(rank,2);
t = zeros(1,size(A,2));
for i=l:-1:l-1
    indx = find(rank(i)==userlist);
    sim = rank(i);
    t = t + A(indx,:)*sim;
end

index = find(bob==0);
rank = t(index);
rank

  

matlab的代码很简单,因为有现场的svd函数可以使用

首先进行svd分解,之后我们会得到U,S,V三个矩阵

个人是这么理解的

如果在最初的矩阵中:列代表item而行代表了user

那么u则代表了user和中间量的关系,V代表了item与中间量的关系

S代表了不同中间量在期中所占的比重,或者是贡献。

这个中间量,我们可以理解为是item和类别,例如电影我们可以分为喜剧或者等等。

这就产生了一个附带产品

我们可以根据U和V对user和item进行聚类。这个以后再说

 

下面我们来了一个新的用户,我们知道它的一些信息,

那么,我们可以通过V和S把用户的信息映射到U相同的平面

然后计算新用户和Old user的相似度

通过老用户对item的兴趣,计算新用户对没有见过的item的兴趣程度

对这个结果rank后,即使最终推荐的顺序。

参看:

http://blog.csdn.net/abcjennifer/article/details/8131087


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
项目升级到Delphi 2010总结(1)发布时间:2022-07-18
下一篇:
delphi从路径中分离文件名发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap