• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

[matlab][转载]matlab图像处理为什么要归一化和如何归一化

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

一、 为什么归一化

1.   基本上,归一化思想是利用图像的不变矩(不变矩能够描述图像整体特征,因其具有平移不变性、比例不变性和旋转不变性等性质)寻找一组参数使其能够消除其他变换函数对图像变换的影响。也就是转换成唯一标准形式以抵抗仿射变换。

      图像归一化使得图像可以抵抗几何变换的攻击,它能够找出图像中的那些不变量,从而得知这些图像原本就是一样的或者一个系列的。

2.   matlab里图像数据有时候必须是浮点型才能处理,二图像数据本身是0-255的UNIT型数据所以需要归一化,转换到0-1之间。

3.   归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。目的是为了:

      (1) 避免具有不同物理意义和量纲输入变量不能平等使用;

      (2) bp中常采用sigmoid函数作为转移函数,归一化能够防止净输入绝对值过大引起的神经元输出饱和现象;

      (3) 保证输出数据中数值小的不被吞食。

4.   神经网络中归一化的原因

      (1) 归一化是为了加快训练网络的收敛性,可以不进行归一化处理。

      (2) 归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1~+1之间是统计的坐标分布。归一化有,同一,统一和和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在时间中的统计分别几率来进行训练(概率计算)和预测的,归一化是同一在0-1之间的统计概论分布;当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习的速度很慢。为了避免出现这种情况,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于0或与其均方差相比很小。

      (3) 归一化是因为sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本输出进行归一化处理。所以这样做分类的问题时[0.9 0.1 0.1]就要比用[1 0 0]要好。但是归一化处理并不总是合适的,根据输出值得分布情况,标准化等其它统计变换方法有时可能更好。

 

二、 如何归一化

      matlab中的归一化处理有三种方法

      1. premnmx、postmnmx、tramnmx

      2. restd、poststd、trastd

      3. 自己编程

      (1) 线性函数转换,表达式如下:

           y=(x-MinValue)/(Maxvalue-Minvalued)

      (2) 对数函数转换,表达式如下:

           y=log10(x)

       (3) 反余切函数转换,表达式如下:

            y=atan(x)*2/pi

        

 

      

 


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
delphi 利用HTTP的POST方法做个在线翻译的小工具 good发布时间:2022-07-18
下一篇:
Delphi与Python结合发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap