• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

matlab拟合三维椭球

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

        同学问的,查了下资料。

%需要拟合的点的坐标为(0,-174.802,990.048),(0.472,-171.284,995.463),(0.413,-168.639,1003.55),(0.064,-167.862,1019.55),
%(0,-170.357,1035.44),(0,-172.142,1044.78),(0.215,-174.759,1047.84),(0.171,-176.586,1048.13),(0,-179.832,1043.34),(0,181.589,1040.11),(0,-182.76,1032.62),(0,-184.13,1017.55),(0.113,-183.445,1003.17)
function my_fit_new()
% 日期:2011年12月29日
% 作者:半人马alpha
% 适用于你说的情况
% 你的数据拟合结果是一个旋转双曲面(a,c均为虚数,即 a^2<0,c^2<0)
% 我按拟合出的参数给你把图画了一下,是旋转双曲面的一支
    % step0:生成拟合数据(例)
    x = [0,0,0,0,0,0,0,0.064,0.113,0.171,0.215,0.413,0.472]\';
    y = [-174.802,-170.357,-172.142,-179.832,181.589,-182.760,-184.130,-167.862,-183.445,-176.586,-174.759,-168.639,-171.284]\';
    z = [990.048,1035.44,1044.78,1043.34,1040.11,1032.62,1017.55,1019.55,1003.17,1048.13,1047.84,1003.55,995.463]\';
    
    % step1:拟合,k表示系数,行向量
    
    % 待拟合方程:F = z^2 = (-c^2/a^2*x^2) + (c^2/a^2*2*x1*x) + (- c^2/b^2*y^2) +
    %                      (c^2/b^2*2*y1*y) + (2*z1*z) +
    %                      (-c^2/a^2*x1^2 - c^2/b^2*y1^2 - z1^2 + c^2)
    % x,y,z 均要先转化为列向量
    % k(1) = -c^2/a^2  由k值就可求出椭圆所有参数!!!
    % k(2) = c^2/a^2*2*x1
    % k(3) = - c^2/b^2
    % k(4) = c^2/b^2*2*y1
    % k(5) = 2*z1
    % k(6) = -c^2/a^2*x1^2 - c^2/b^2*y1^2 - z1^2 + c^2
    
    xdata = [x,y,z];
    ydata = z.^2;  %% 先把 z 值平方,再进行拟合
    k0 = ones(1,6);  %% k 的运行初值,不会影响最终结果
    
    F = @(k,xdata) k(1)*xdata(:,1).^2 + k(2)*xdata(:,1) + k(3)*xdata(:,2).^2 + k(4)*xdata(:,2) + k(5)*xdata(:,3) + k(6);
    [k,resnorm]=lsqcurvefit(F,k0,xdata,ydata);
% step2:椭圆参数求解
    x1 = -k(2)/k(1)/2;
    y1 = -k(4)/k(3)/2;
    z1 = k(5)/2;
    c = sqrt(z1^2 + k(6) - k(1)*x1^2 - k(3)*y1^2);
    a = c/sqrt(-k(1));
    b = c/sqrt(-k(3));
disp(\'x1:\');
    disp(x1);
    disp(\'y1:\');
    disp(y1);
    disp(\'z1:\');
    disp(z1);
    disp(\'a轴:\');
    disp(a);
    disp(\'b轴:\');
    disp(b);
    disp(\'c轴:\');
    disp(c);
    
end

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Delphi对Access文件加密发布时间:2022-07-18
下一篇:
Delphi–NativeXMLFor2010发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap