• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

plotacriticaldifferencediagram,MATLABcode

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

 

plot a critical difference diagram , MATLAB code

建立criticaldifference函数

function cd = criticaldifference(s,labels,alpha)
%
% CRITICALDIFFERNCE - plot a critical difference diagram
%
%    CRITICALDIFFERENCE(S,LABELS) produces a critical difference diagram [1]
%    displaying the statistical significance (or otherwise) of a matrix of
%    scores, S, achieved by a set of machine learning algorithms.  Here
%    LABELS is a cell array of strings giving the name of each algorithm.
%
%    References
%    
%    [1] Demsar, J., "Statistical comparisons of classifiers over multiple
%        datasets", Journal of Machine Learning Research, vol. 7, pp. 1-30,
%        2006.
%

%
% File        : criticaldifference.m
%
% Date        : Monday 14th April 2008
%
% Author      : Gavin C. Cawley
%
% Description : Sparse multinomial logistic regression using a Laplace prior.
%
% History     : 14/04/2008 - v1.00
%
% Copyright   : (c) Dr Gavin C. Cawley, April 2008.
%
%    This program is free software; you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation; either version 2 of the License, or
%    (at your option) any later version.
%
%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program; if not, write to the Free Software
%    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%


% Thanks to Gideon Dror for supplying the extended table of critical values.

if nargin < 3
   alpha = 0.1;
end

% convert scores into ranks 
[N,k] = size(s);
[S,r] = sort(s');
idx   = k*repmat(0:N-1, k, 1)' + r';
R     = repmat(1:k, N, 1);
S     = S';

for i=1:N
    for j=1:k
        index    = S(i,j) == S(i,:);
        R(i,index) = mean(R(i,index));
    end
end

r(idx)  = R;
r       = r';

% compute critical difference
if alpha == 0.01
   qalpha = [0.000 2.576 2.913 3.113 3.255 3.364 3.452 3.526 3.590 3.646 ...
             3.696 3.741 3.781 3.818 3.853 3.884 3.914 3.941 3.967 3.992 ...
             4.015 4.037 4.057 4.077 4.096 4.114 4.132 4.148 4.164 4.179 ...
             4.194 4.208 4.222 4.236 4.249 4.261 4.273 4.285 4.296 4.307 ...
             4.318 4.329 4.339 4.349 4.359 4.368 4.378 4.387 4.395 4.404 ...
             4.412 4.420 4.428 4.435 4.442 4.449 4.456 ];
         
elseif alpha == 0.05 
   qalpha = [0.000 1.960 2.344 2.569 2.728 2.850 2.948 3.031 3.102 3.164 ...
             3.219 3.268 3.313 3.354 3.391 3.426 3.458 3.489 3.517 3.544 ...
             3.569 3.593 3.616 3.637 3.658 3.678 3.696 3.714 3.732 3.749 ...
             3.765 3.780 3.795 3.810 3.824 3.837 3.850 3.863 3.876 3.888 ...
             3.899 3.911 3.922 3.933 3.943 3.954 3.964 3.973 3.983 3.992 ...
             4.001 4.009 4.017 4.025 4.032 4.040 4.046]; 

elseif alpha == 0.1
   qalpha = [0.000 1.645 2.052 2.291 2.460 2.589 2.693 2.780 2.855 2.920 ...
             2.978 3.030 3.077 3.120 3.159 3.196 3.230 3.261 3.291 3.319 ...
             3.346 3.371 3.394 3.417 3.439 3.459 3.479 3.498 3.516 3.533 ...
             3.550 3.567 3.582 3.597 3.612 3.626 3.640 3.653 3.666 3.679 ...
             3.691 3.703 3.714 3.726 3.737 3.747 3.758 3.768 3.778 3.788 ...
             3.797 3.806 3.814 3.823 3.831 3.838 3.846];

else
    error('alpha must be 0.01, 0.05 or 0.1');
end

cd = qalpha(k)*sqrt(k*(k+1)/(6*N));


figure(1);
clf
axis off
axis([-0.2 1.2 -20 140]);
axis xy 
tics = repmat((0:(k-1))/(k-1), 3, 1);
line(tics(:), repmat([100, 101, 100], 1, k), 'LineWidth', 1.5, 'Color', 'k');
%tics = repmat(((0:(k-2))/(k-1)) + 0.5/(k-1), 3, 1);
%line(tics(:), repmat([100, 101, 100], 1, k-1), 'LineWidth', 1.5, 'Color', 'k');
line([0 0 0 cd/(k-1) cd/(k-1) cd/(k-1)], [113 111 112 112 111 113], 'LineWidth', 1, 'Color', 'r');
text(0.03, 116, ['Critical Distance=' num2str(cd)], 'FontSize', 12, 'HorizontalAlignment', 'left', 'Color', 'r');

for i=1:k
    text((i-1)/(k-1), 105, num2str(k-i+1), 'FontSize', 12, 'HorizontalAlignment', 'center');
end

% compute average ranks
r       = mean(r);
[r,idx] = sort(r);

% compute statistically similar cliques
clique           = repmat(r,k,1) - repmat(r',1,k);
clique(clique<0) = realmax; 
clique           = clique < cd;

for i=k:-1:2
    if all(clique(i-1,clique(i,:))==clique(i,clique(i,:)))
        clique(i,:) = 0;
    end
end

n                = sum(clique,2);
clique           = clique(n>1,:);
n                = size(clique,1);

%yanse={'b','g','y','m','r'};
b=linspace(0,1,k);
% labels displayed on the right
for i=1:ceil(k/2)
   line([(k-r(i))/(k-1) (k-r(i))/(k-1) 1], [100 100-3*(n+1)-10*i 100-3*(n+1)-10*i], 'Color', [0 0 b(i)]);
   %text(1.2, 100 - 5*(n+1)- 10*i + 2, num2str(r(i)), 'FontSize', 10, 'HorizontalAlignment', 'right');
   text(1.02, 100 - 3*(n+1) - 10*i, labels{idx(i)}, 'FontSize', 12, 'VerticalAlignment', 'middle', 'HorizontalAlignment', 'left', 'Color', [0 0 b(i)]);
end

% labels displayed on the left
for i=ceil(k/2)+1:k
   line([(k-r(i))/(k-1) (k-r(i))/(k-1) 0], [100 100-3*(n+1)-10*(k-i+1) 100-3*(n+1)-10*(k-i+1)], 'Color', [0 0 b(i)]);
   %text(-0.2, 100 - 5*(n+1) -10*(k-i+1)+2, num2str(r(i)), 'FontSize', 10, 'HorizontalAlignment', 'left');
   text(-0.02, 100 - 3*(n+1) -10*(k-i+1), labels{idx(i)}, 'FontSize', 12, 'VerticalAlignment', 'middle', 'HorizontalAlignment', 'right', 'Color', [0 0 b(i)]);
end

% group cliques of statistically similar classifiers
for i=1:size(clique,1)
   R = r(clique(i,:));
   %line([((k-min(R))/(k-1)) + 0.015 ((k - max(R))/(k-1)) - 0.015], [100-5*i 100-5*i], 'LineWidth', 1, 'Color', 'r');
   %line([0 0 0 cd/(k-1) cd/(k-1) cd/(k-1)], [113 111 112 112 111 113], 'LineWidth', 1, 'Color', 'r');
   line([((k-min(R))/(k-1)) ((k-min(R))/(k-1)) ((k-min(R))/(k-1)) ((k - max(R))/(k-1)) ((k - max(R))/(k-1)) ((k - max(R))/(k-1))], [100+1-5*i 100-1-5*i 100-5*i 100-5*i 100-1-5*i 100+1-5*i], 'LineWidth', 1, 'Color', 'r');
end

 可执行m文件:

 load Data
s=AccMatrix;
labels={'SCV1V1','SVC1VA','SVR','CSSVC','SVMOP','NNOP','ELMOP','POM',...
    'NNPOM', 'SVOREX','SVORIM','SVORIMLin','KDLOR','GPOR','REDSVM','ORBALL' ,'NPSVORIM'};%方法的标签

alpha=0.05; %显著性水平0.1,0.05或0.01
cd = criticaldifference(s,labels,alpha)

  AccMatrix=[

0.28 0.12 0.28 0.11 0.32 0.08 0.26 0.13 0.37 0.10 0.28 0.12 0.42 0.21 0.38 0.17 0.36 0.14 0.36 0.13 0.38 0.12 0.37 0.10 0.34 0.15 0.39 0.09 0.37 0.12 0.36 0.13 0.37 0.11 

0.31 0.12 0.33 0.11 0.34 0.13 0.32 0.11 0.32 0.09 0.24 0.11 0.40 0.18 0.50 0.15 0.34 0.18 0.35 0.12 0.34 0.12 0.34 0.12 0.33 0.11 0.48 0.17 0.33 0.11 0.30 0.12 0.28 0.14 

0.36 0.09 0.40 0.14 0.39 0.11 0.39 0.13 0.40 0.09 0.39 0.11 0.44 0.16 0.62 0.15 0.50 0.13 0.37 0.13 0.37 0.13 0.37 0.13 0.39 0.12 0.55 0.10 0.38 0.13 0.36 0.12 0.32 0.10 

0.22 0.12 0.28 0.16 0.24 0.10 0.27 0.15 0.27 0.11 0.29 0.11 0.39 0.13 0.65 0.14 0.39 0.14 0.26 0.11 0.27 0.11 0.32 0.11 0.26 0.11 0.36 0.16 0.27 0.12 0.30 0.10 0.22 0.10 

0.44 0.06 0.45 0.06 0.40 0.07 0.43 0.07 0.46 0.06 0.41 0.06 0.44 0.08 0.50 0.08 0.45 0.09 0.41 0.07 0.40 0.07 0.48 0.07 0.43 0.05 0.67 0.04 0.40 0.07 0.40 0.06 0.41 0.05 

0.03 0.03 0.04 0.03 0.04 0.02 0.04 0.02 0.04 0.03 0.04 0.02 0.06 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.04 0.03 0.03 0.03 

0.03 0.01 0.03 0.01 0.16 0.03 0.03 0.01 0.03 0.01 0.04 0.01 0.09 0.02 0.09 0.02 0.06 0.05 0.00 0.01 0.00 0.01 0.09 0.02 0.16 0.03 0.03 0.01 0.00 0.00 0.03 0.02 0.02 0.01 

0.42 0.03 0.44 0.03 0.43 0.03 0.43 0.03 0.42 0.03 0.42 0.03 0.43 0.02 0.43 0.03 0.46 0.03 0.43 0.03 0.43 0.03 0.43 0.03 0.51 0.03 0.42 0.03 0.43 0.03 0.44 0.03 0.43 0.03 

0.01 0.00 0.01 0.01 0.03 0.01 0.01 0.01 0.00 0.00 0.03 0.01 0.16 0.01 0.84 0.30 0.11 0.02 0.01 0.01 0.01 0.01 0.08 0.01 0.05 0.01 0.04 0.01 0.01 0.00 0.01 0.01 0.01 0.00 

0.43 0.04 0.43 0.06 0.46 0.07 0.43 0.06 0.45 0.10 0.53 0.09 0.57 0.13 0.66 0.16 0.62 0.14 0.45 0.06 0.45 0.07 0.43 0.08 0.47 0.09 0.42 0.03 0.44 0.05 0.46 0.09 0.42 0.08 

0.05 0.03 0.05 0.03 0.07 0.04 0.05 0.03 0.07 0.03 0.06 0.03 0.07 0.03 0.71 0.03 0.06 0.03 0.02 0.01 0.02 0.01 0.74 0.01 0.11 0.03 0.05 0.02 0.02 0.01 0.05 0.02 0.04 0.03 

0.36 0.03 0.45 0.03 0.36 0.03 0.44 0.03 0.35 0.03 0.42 0.04 0.43 0.03 0.85 0.02 0.46 0.04 0.36 0.03 0.36 0.03 0.36 0.02 0.37 0.03 0.31 0.03 0.36 0.03 0.38 0.03 0.34 0.03 

0.37 0.02 0.37 0.02 0.38 0.02 0.37 0.02 0.37 0.02 0.37 0.03 0.37 0.02 0.38 0.03 0.38 0.02 0.38 0.02 0.38 0.02 0.39 0.02 0.46 0.03 0.39 0.03 0.37 0.02 0.39 0.03 0.37 0.03 

0.25 0.06 0.26 0.06 0.32 0.07 0.27 0.06 0.26 0.04 0.39 0.06 0.38 0.06 0.53 0.19 0.55 0.08 0.32 0.05 0.32 0.07 0.41 0.07 0.30 0.07 0.39 0.07 0.32 0.07 0.29 0.05 0.27 0.05 

0.35 0.02 0.36 0.02 0.37 0.02 0.36 0.02 0.36 0.02 0.40 0.02 0.40 0.02 0.40 0.02 0.40 0.02 0.37 0.02 0.37 0.02 0.41 0.02 0.35 0.02 0.39 0.01 0.37 0.02 0.33 0.02 0.36 0.02 

0.31 0.04 0.33 0.03 0.30 0.03 0.32 0.03 0.29 0.03 0.31 0.04 0.30 0.04 0.29 0.03 0.34 0.13 0.29 0.03 0.28 0.03 0.29 0.04 0.36 0.03 0.29 0.03 0.29 0.03 0.32 0.02 0.29 0.03 

0.74 0.02 0.82 0.03 0.75 0.02 0.80 0.03 0.74 0.02 0.71 0.02 0.75 0.02 0.74 0.02 0.73 0.03 0.71 0.03 0.75 0.02 0.76 0.02 0.81 0.03 0.71 0.03 0.75 0.02 0.76 0.02 0.75 0.03 ];

 


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
delphi线程教学第四节:多线程类的改进发布时间:2022-07-18
下一篇:
matlabfftdemo发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap