• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

MATLAB随机森林回归模型

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

 

MATLAB随机森林回归模型:

调用matlab自带的TreeBagger.m

T=textread(\'E:\datasets-orreview\discretized-regression\10bins\abalone10\matlab\test_abalone10.2\');
X=textread(\'E:\datasets-orreview\discretized-regression\10bins\abalone10\matlab\train_abalone10.2\');
%nTree = round(sqrt(size(X,2)-1));
nTree = 50;
train_data = X(:,1:end-1);train_label = X(:,end); test_data = T(:,1:end-1);
Factor = TreeBagger(nTree, train_data, train_label,\'Method\',\'regression\');
[Predict_label,Scores] = predict(Factor, test_data);
%Predict_label=cellfun(@str2num,Predict_label(1:end));
MZE = mean(round(Predict_label) ~= T(:,end))
MAE = mean(abs(round(Predict_label) - T(:,end)))

 

调用外部函数forestTrain.m来自https://github.com/karpathy/Random-Forest-Matlab

T=textread(\'E:\datasets-orreview\ordinal-regression\ERA\matlab\test_ERA.1\');
X=textread(\'E:\datasets-orreview\ordinal-regression\ERA\matlab\train_ERA.1\');
opts= struct;
opts.depth= 9;
opts.numTrees= 60;
opts.numSplits= 5;
opts.verbose= true;
opts.classifierID= 2; % weak learners to use. Can be an array for mix of weak learners too
train_data = X(:,1:end-1);train_label = X(:,end); test_data = T(:,1:end-1);
tic;
m= forestTrain(train_data, train_label, opts);
timetrain= toc;
tic;
yhatTrain = forestTest(m, test_data);
timetest= toc;
MZE = mean(round(yhatTrain) ~= T(:,end))
MAE = mean(abs(round(yhatTrain) - T(:,end)))

  


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
在delphi中用indy实现FTP上传下载的例子发布时间:2022-07-18
下一篇:
Delphi--最强大的开发工具(欢迎转载) - stevenlaz发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap