在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
[XLOADINGS,YLOADINGS] = plsregress(X,Y,NCOMP) // Ncomp:主成分个数 // XLOADING : X 的线性组合系数矩阵 //YLOADING : y // XSCORES is an N-by-NCOMP orthonormal matrix with rows corresponding to observations, columns to components. // YSCORES is an N-by-NCOMP matrix with rows corresponding to observations,columns to components. YSCORES is neither orthogonal nor normalized. //BETA is a (P+1)-by-M matrix, containing intercept terms(截距项) in the first row, i.e., Y = [ONES(N,1) X]*BETA + Yresiduals, and Y0 = X0*BETA(2:END,:) + Yresiduals. // PCTVAR containing the percentage of variance explained by the model. // MSE containing estimated mean squared errors for PLS models with 0:NCOMP components. [XL2,YL2,XS2,YS2,BETA2,PCTVAR2,MSE2,stats2] =plsregress(a,b,ncomp)
beta3(1,:)=mu(n+1:end)-mu(1:n)./sig(1:n)*BETA2([2:end],:).*sig(n+1:end) %原始数据回归方程的常数项 beta3([2:n+1],:)=(1./sig(1:n))'*sig(n+1:end).*BETA2([2:end],:) %计算原始变量x1,...,xn的系数,每一列是一个回归方程 sig = std(data) ----------------------------------------------------------------------------------------------------- Χ1' = -4.1306 * u1+0.0558 *u2t XL2 = -4.1306 0.0558
2.1191 -0.9714 XSCORES is an N-by-NCOMP orthonormal matrix with rows corresponding to observations, columns to components. |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论