在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
MATLAB消除曲线毛刺Outlier Detection and Removal [hampel] function [YY, I, Y0, LB, UB, ADX, NO] = hampel(X, Y, DX, T, varargin) % HAMPEL Hampel Filter. % HAMPEL(X,Y,DX,T,varargin) returns the Hampel filtered values of the % elements in Y. It was developed to detect outliers in a time series, % but it can also be used as an alternative to the standard median % filter. % % References % Chapters 1.4.2, 3.2.2 and 4.3.4 in Mining Imperfect Data: Dealing with % Contamination and Incomplete Records by Ronald K. Pearson. % % Acknowledgements % I would like to thank Ronald K. Pearson for the introduction to moving % window filters. Please visit his blog at: % http://exploringdatablog.blogspot.com/2012/01/moving-window-filters-and % -pracma.html % % X,Y are row or column vectors with an equal number of elements. % The elements in Y should be Gaussian distributed. % % Input DX,T,varargin must not contain NaN values! % % DX,T are optional scalar values. % DX is a scalar which defines the half width of the filter window. % It is required that DX > 0 and DX should be dimensionally equivalent to % the values in X. % T is a scalar which defines the threshold value used in the equation % |Y - Y0| > T*S0. % % Standard Parameters for DX and T: % DX = 3*median(X(2:end)-X(1:end-1)); % T = 3; % % varargin covers addtional optional input. The optional input must be in % the form of 'PropertyName', PropertyValue. % Supported PropertyNames: % 'standard': Use the standard Hampel filter. % 'adaptive': Use an experimental adaptive Hampel filter. Explained under % Revision 1 details below. % % Supported PropertyValues: Scalar value which defines the tolerance of % the adaptive filter. In the case of standard Hampel filter this value % is ignored. % % Output YY,I,Y0,LB,UB,ADX are column vectors containing Hampel filtered % values of Y, a logical index of the replaced values, nominal data, % lower and upper bounds on the Hampel filter and the relative half size % of the local window, respectively. % % NO is a scalar that specifies the Number of Outliers detected. % % Examples % 1. Hampel filter removal of outliers % X = 1:1000; % Pseudo Time % Y = 5000 + randn(1000, 1); % Pseudo Data % Outliers = randi(1000, 10, 1); % Index of Outliers % Y(Outliers) = Y(Outliers) + randi(1000, 10, 1); % Pseudo Outliers % [YY,I,Y0,LB,UB] = hampel(X,Y); % % plot(X, Y, 'b.'); hold on; % Original Data % plot(X, YY, 'r'); % Hampel Filtered Data % plot(X, Y0, 'b--'); % Nominal Data % plot(X, LB, 'r--'); % Lower Bounds on Hampel Filter % plot(X, UB, 'r--'); % Upper Bounds on Hampel Filter % plot(X(I), Y(I), 'ks'); % Identified Outliers % % 2. Adaptive Hampel filter removal of outliers % DX = 1; % Window Half size % T = 3; % Threshold % Threshold = 0.1; % AdaptiveThreshold % X = 1:DX:1000; % Pseudo Time % Y = 5000 + randn(1000, 1); % Pseudo Data % Outliers = randi(1000, 10, 1); % Index of Outliers % Y(Outliers) = Y(Outliers) + randi(1000, 10, 1); % Pseudo Outliers % [YY,I,Y0,LB,UB] = hampel(X,Y,DX,T,'Adaptive',Threshold); % % plot(X, Y, 'b.'); hold on; % Original Data % plot(X, YY, 'r'); % Hampel Filtered Data % plot(X, Y0, 'b--'); % Nominal Data % plot(X, LB, 'r--'); % Lower Bounds on Hampel Filter % plot(X, UB, 'r--'); % Upper Bounds on Hampel Filter % plot(X(I), Y(I), 'ks'); % Identified Outliers % % 3. Median Filter Based on Filter Window % DX = 3; % Filter Half Size % T = 0; % Threshold % X = 1:1000; % Pseudo Time % Y = 5000 + randn(1000, 1); % Pseudo Data % [YY,I,Y0] = hampel(X,Y,DX,T); % % plot(X, Y, 'b.'); hold on; % Original Data % plot(X, Y0, 'r'); % Median Filtered Data % % Version: 1.5 % Last Update: 09.02.2012 % % Copyright (c) 2012: % Michael Lindholm Nielsen % % --- Revision 5 --- 09.02.2012 % (1) Corrected potential error in internal median function. % (2) Removed internal "keyboard" command. % (3) Optimized internal Gauss filter. % % --- Revision 4 --- 08.02.2012 % (1) The elements in X and Y are now temporarily sorted for internal % computations. % (2) Performance optimization. % (3) Added Example 3. % % --- Revision 3 --- 06.02.2012 % (1) If the number of elements (X,Y) are below 2 the output YY will be a % copy of Y. No outliers will be detected. No error will be issued. % % --- Revision 2 --- 05.02.2012 % (1) Changed a calculation in the adaptive Hampel filter. The threshold % parameter is now compared to the percentage difference between the % j'th and the j-1 value. Also notice the change from Threshold = 1.1 % to Threshold = 0.1 in example 2 above. % (2) Checks if DX,T or varargin contains NaN values. % (3) Now capable of ignoring NaN values in X and Y. % (4) Added output Y0 - Nominal Data. % % --- Revision 1 --- 28.01.2012 % (1) Replaced output S (Local Scaled Median Absolute Deviation) with % lower (LB) and upper (UB) bounds on the Hampel filter. % (2) Added option to use an experimental adaptive Hampel filter. % The Principle behind this filter is described below. % a) The filter changes the local window size until the change in the % local scaled median absolute deviation is below a threshold value % set by the user. In the above example (2) this parameter is set to % 0.1 corresponding to a maximum acceptable change of 10% in the % local scaled median absolute deviation. This process leads to three % locally optimized parameters Y0 (Local Nominal Data Reference % value), S0 (Local Scale of Natural Variation), ADX (Local Adapted % Window half size relative to DX). % b) The optimized parameters are then smoothed by a Gaussian filter with % a standard deviation of DX=2*median(XSort(2:end) - XSort(1:end-1)). % This means that local values are weighted highest, but nearby data % (which should be Gaussian distributed) is also used in refining % ADX, Y0, S0. % % --- Revision 0 --- 26.01.2012 % (1) Release of first edition. %% Error Checking % Check for correct number of input arguments if nargin < 2 error('Not enough input arguments.'); end % Check that the number of elements in X match those of Y. if ~isequal(numel(X), numel(Y)) error('Inputs X and Y must have the same number of elements.'); end % Check that X is either a row or column vector if size(X, 1) == 1 X = X'; % Change to column vector elseif size(X, 2) == 1 else error('Input X must be either a row or column vector.') end % Check that Y is either a row or column vector if size(Y, 1) == 1 Y = Y'; % Change to column vector elseif size(Y, 2) == 1 else error('Input Y must be either a row or column vector.') end % Sort X SortX = sort(X); % Check that DX is of type scalar if exist('DX', 'var') if ~isscalar(DX) error('DX must be a scalar.'); elseif DX < 0 error('DX must be larger than zero.'); end else DX = 3*median(SortX(2:end) - SortX(1:end-1)); end % Check that T is of type scalar if exist('T', 'var') if ~isscalar(T) error('T must be a scalar.'); end else T = 3; end % Check optional input if isempty(varargin) Option = 'standard'; elseif numel(varargin) < 2 error('Optional input must also contain threshold value.'); else % varargin{1} if ischar(varargin{1}) Option = varargin{1}; else error('PropertyName must be of type char.'); end % varargin{2} if isscalar(varargin{2}) Threshold = varargin{2}; else error('PropertyValue value must be a scalar.'); end end % Check that DX,T does not contain NaN values if any(isnan(DX) | isnan(T)) error('Inputs DX and T must not contain NaN values.'); end % Check that varargin does not contain NaN values CheckNaN = cellfun(@isnan, varargin, 'UniformOutput', 0); if any(cellfun(@any, CheckNaN)) error('Optional inputs must not contain NaN values.'); end % Detect/Ignore NaN values in X and Y IdxNaN = isnan(X) | isnan(Y); X = X(~IdxNaN); Y = Y(~IdxNaN); %% Calculation % Preallocation YY = Y; I = false(size(Y)); S0 = NaN(size(YY)); Y0 = S0; ADX = repmat(DX, size(Y)); if numel(X) > 1 switch lower(Option) case 'standard' for i = 1:numel(Y) % Calculate Local Nominal Data Reference value % and Local Scale of Natural Variation [Y0(i), S0(i)] = localwindow(X, Y, DX, i); end case 'adaptive' % Preallocate Y0Tmp = S0; S0Tmp = S0; DXTmp = (1:numel(S0))'*DX; % Integer variation of Window Half Size % Calculate Initial Guess of Optimal Parameters Y0, S0, ADX for i = 1:numel(Y) % Setup/Reset temporary counter etc. j = 1; S0Rel = inf; while S0Rel > Threshold % Calculate Local Nominal Data Reference value % and Local Scale of Natural Variation using DXTmp window [Y0Tmp(j), S0Tmp(j)] = localwindow(X, Y, DXTmp(j), i); % Calculate percent difference relative to previous value if j > 1 S0Rel = abs((S0Tmp(j-1) - S0Tmp(j))/(S0Tmp(j-1) + S0Tmp(j))/2); end % Iterate counter j = j + 1; end Y0(i) = Y0Tmp(j - 2); % Local Nominal Data Reference value S0(i) = S0Tmp(j - 2); % Local Scale of Natural Variation ADX(i) = DXTmp(j - 2)/DX; % Local Adapted Window size relative to DX end % Gaussian smoothing of relevant parameters DX = 2*median(SortX(2:end) - SortX(1:end-1)); ADX = smgauss(X, ADX, DX); S0 = smgauss(X, S0, DX); Y0 = smgauss(X, Y0, DX); otherwise error('Unknown option ''%s''.', varargin{1}); end end %% Prepare Output UB = Y0 + T*S0; % Save information about local scale LB = Y0 - T*S0; % Save information about local scale Idx = abs(Y - Y0) > T*S0; % Index of possible outlier YY(Idx) = Y0(Idx); % Replace outliers with local median value I(Idx) = true; % Set Outlier detection NO = sum(I); % Output number of detected outliers % Reinsert NaN values detected at error checking stage if any(IdxNaN) [YY, I, Y0, LB, UB, ADX] = rescale(IdxNaN, YY, I, Y0, LB, UB, ADX); end %% Built-in functions function [Y0, S0] = localwindow(X, Y, DX, i) % Index relevant to Local Window Idx = X(i) - DX <= X & X <= X(i) + DX; % Calculate Local Nominal Data Reference Value Y0 = median(Y(Idx)); % Calculate Local Scale of Natural Variation S0 = 1.4826*median(abs(Y(Idx) - Y0)); end function M = median(YM) % Isolate relevant values in Y YM = sort(YM); NYM = numel(YM); % Calculate median if mod(NYM,2) % Uneven M = YM((NYM + 1)/2); else % Even M = (YM(NYM/2)+YM(NYM/2+1))/2; end end function G = smgauss(X, V, DX) % Prepare Xj and Xk Xj = repmat(X', numel(X), 1); Xk = repmat(X, 1, numel(X)); % Calculate Gaussian weight Wjk = exp(-((Xj - Xk)/(2*DX)).^2); % Calculate Gaussian Filter G = Wjk*V./sum(Wjk,1)'; end function varargout = rescale(IdxNaN, varargin) % Output Rescaled Elements varargout = cell(nargout, 1); for k = 1:nargout Element = varargin{k}; if islogical(Element) ScaledElement = false(size(IdxNaN)); elseif isnumeric(Element) ScaledElement = NaN(size(IdxNaN)); end ScaledElement(~IdxNaN) = Element; varargout(k) = {ScaledElement}; end end end hampel.m |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论