http://liukun966123.my.gsdn.net/2004/10/22/4797/
Delphi中的线程类 转贴于 华夏黑客同盟 http://www.77169.org
Delphi中有一个线程类TThread是用来实现多线程编程的,这个绝大多数Delphi书藉都有说到,但基本上都是对
TThread类的几个成员作一简单介绍,再说明一下Execute的实现和Synchronize的用法就完了。然而这并不是多线程编 程的全部,我写此文的目的在于对此作一个补充。
线程本质上是进程中一段并发运行的代码。一个进程至少有一个线程,即所谓的主线程。同时还可以有多个子线程。 当一个进程中用到超过一个线程时,就是所谓的“多线程”。 那么这个所谓的“一段代码”是如何定义的呢?其实就是一个函数或过程(对Delphi而言)。 如果用Windows API来创建线程的话,是通过一个叫做CreateThread的API函数来实现的,它的定义为: HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId );
其各参数如它们的名称所说,分别是:线程属性(用于在NT下进行线程的安全属性设置,在9X下无效),堆栈大小, 起始地址,参数,创建标志(用于设置线程创建时的状态),线程ID,最后返回线程Handle。其中的起始地址就是线 程函数的入口,直至线程函数结束,线程也就结束了。
因为CreateThread参数很多,而且是Windows的API,所以在C Runtime Library里提供了一个通用的线程函数(理论上 可以在任何支持线程的OS中使用): unsigned long _beginthread(void (_USERENTRY *__start)(void *), unsigned __stksize, void *__arg);
Delphi也提供了一个相同功能的类似函数: function BeginThread( SecurityAttributes: Pointer; StackSize: LongWord; ThreadFunc: TThreadFunc; Parameter: Pointer; CreationFlags: LongWord; var ThreadId: LongWord ): Integer;
这三个函数的功能是基本相同的,它们都是将线程函数中的代码放到一个独立的线程中执行。线程函数与一般函数的 最大不同在于,线程函数一启动,这三个线程启动函数就返回了,主线程继续向下执行,而线程函数在一个独立的线 程中执行,它要执行多久,什么时候返回,主线程是不管也不知道的。 正常情况下,线程函数返回后,线程就终止了。但也有其它方式:
Windows API: VOID ExitThread( DWORD dwExitCode );
C Runtime Library: void _endthread(void);
Delphi Runtime Library: procedure EndThread(ExitCode: Integer);
为了记录一些必要的线程数据(状态/属性等),OS会为线程创建一个内部Object,如在Windows中那个Handle便是这 个内部Object的Handle,所以在线程结束的时候还应该释放这个Object。
虽然说用API或RTL(Runtime Library)已经可以很方便地进行多线程编程了,但是还是需要进行较多的细节处理,为此 Delphi在Classes单元中对线程作了一个较好的封装,这就是VCL的线程类:TThread 使用这个类也很简单,大多数的Delphi书籍都有说,基本用法是:先从TThread派生一个自己的线程类(因为TThread 是一个抽象类,不能生成实例),然后是Override抽象方法:Execute(这就是线程函数,也就是在线程中执行的代码 部分),如果需要用到可视VCL对象,还需要通过Synchronize过程进行。关于之方面的具体细节,这里不再赘述,请 参考相关书籍。
本文接下来要讨论的是TThread类是如何对线程进行封装的,也就是深入研究一下TThread类的实现。因为只是真正地 了解了它,才更好地使用它。 下面是DELPHI7中TThread类的声明(本文只讨论在Windows平台下的实现,所以去掉了所有有关Linux平台部分的代码 ):
TThread = class private FHandle: THandle; FThreadID: THandle; FCreateSuspended: Boolean; FTerminated: Boolean; FSuspended: Boolean; FFreeOnTerminate: Boolean; FFinished: Boolean; FReturnValue: Integer; FOnTerminate: TNotifyEvent; FSynchronize: TSynchronizeRecord; FFatalException: TObject; procedure CallOnTerminate; class procedure Synchronize(ASyncRec: PSynchronizeRecord); overload; function GetPriority: TThreadPriority; procedure SetPriority(Value: TThreadPriority); procedure SetSuspended(Value: Boolean); protected procedure CheckThreadError(ErrCode: Integer); overload; procedure CheckThreadError(Success: Boolean); overload; procedure DoTerminate; virtual; procedure Execute; virtual; abstract; procedure Synchronize(Method: TThreadMethod); overload; property ReturnValue: Integer read FReturnValue write FReturnValue; property Terminated: Boolean read FTerminated; public constructor Create(CreateSuspended: Boolean); destructor Destroy; override; procedure AfterConstruction; override; procedure Resume; procedure Suspend; procedure Terminate; function WaitFor: LongWord; class procedure Synchronize(AThread: TThread; AMethod: TThreadMethod); overload; class procedure StaticSynchronize(AThread: TThread; AMethod: TThreadMethod); property FatalException: TObject read FFatalException; property FreeOnTerminate: Boolean read FFreeOnTerminate write FFreeOnTerminate; property Handle: THandle read FHandle; property Priority: TThreadPriority read GetPriority write SetPriority; property Suspended: Boolean read FSuspended write SetSuspended; property ThreadID: THandle read FThreadID; property OnTerminate: TNotifyEvent read FOnTerminate write FOnTerminate; end;
TThread类在Delphi的RTL里算是比较简单的类,类成员也不多,类属性都很简单明白,本文将只对几个比较重要的类 成员方法和唯一的事件:OnTerminate作详细分析。 首先就是构造函数: constructor TThread.Create(CreateSuspended: Boolean); begin inherited Create; AddThread; FSuspended := CreateSuspended; FCreateSuspended := CreateSuspended; FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), CREATE_SUSPENDED, FThreadID); if FHandle = 0 then raise EThread.CreateResFmt(@SThreadCreateError, [SysErrorMessage(GetLastError)]); end; 虽然这个构造函数没有多少代码,但却可以算是最重要的一个成员,因为线程就是在这里被创建的。 在通过Inherited调用TObject.Create后,第一句就是调用一个过程:AddThread,其源码如下: procedure AddThread; begin InterlockedIncrement(ThreadCount); end;
同样有一个对应的RemoveThread: procedure RemoveThread; begin InterlockedDecrement(ThreadCount); end; 它们的功能很简单,就是通过增减一个全局变量来统计进程中的线程数。只是这里用于增减变量的并不是常用的 Inc/Dec过程,而是用了InterlockedIncrement/InterlockedDecrement这一对过程,它们实现的功能完全一样,都是 对变量加一或减一。但它们有一个最大的区别,那就是InterlockedIncrement/InterlockedDecrement是线程安全的。 即它们在多线程下能保证执行结果正确,而Inc/Dec不能。或者按操作系统理论中的术语来说,这是一对“原语”操作。
以加一为例来说明二者实现细节上的不同: 一般来说,对内存数据加一的操作分解以后有三个步骤: 1、 从内存中读出数据 2、 数据加一 3、 存入内存 现在假设在一个两个线程的应用中用Inc进行加一操作可能出现的一种情况: 1、 线程A从内存中读出数据(假设为3) 2、 线程B从内存中读出数据(也是3) 3、 线程A对数据加一(现在是4) 4、 线程B对数据加一(现在也是4) 5、 线程A将数据存入内存(现在内存中的数据是4) 6、 线程B也将数据存入内存(现在内存中的数据还是4,但两个线程都对它加了一,应该是5才对,所以这里出现了 错误的结果)
而用InterlockIncrement过程则没有这个问题,因为所谓“原语”是一种不可中断的操作,即操作系统能保证在一个 “原语”执行完毕前不会进行线程切换。所以在上面那个例子中,只有当线程A执行完将数据存入内存后,线程B才可 以开始从中取数并进行加一操作,这样就保证了即使是在多线程情况下,结果也一定会是正确的。
前面那个例子也说明一种“线程访问冲突”的情况,这也就是为什么线程之间需要“同步”(Synchronize),关于这 个,在后面说到同步时还会再详细讨论。
说到同步,有一个题外话:加拿大滑铁卢大学的教授李明曾就Synchronize一词在“线程同步”中被译作“同步”提出 过异议,个人认为他说的其实很有道理。在中文中“同步”的意思是“同时发生”,而“线程同步”目的就是避免这 种“同时发生”的事情。而在英文中,Synchronize的意思有两个:一个是传统意义上的同步(To occur at the same time),另一个是“协调一致”(To operate in unison)。在“线程同步”中的Synchronize一词应该是指后面一种 意思,即“保证多个线程在访问同一数据时,保持协调一致,避免出错”。不过像这样译得不准的词在IT业还有很多 ,既然已经是约定俗成了,本文也将继续沿用,只是在这里说明一下,因为软件开发是一项细致的工作,该弄清楚的 ,绝不能含糊。
扯远了,回到TThread的构造函数上,接下来最重要就是这句了: FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), CREATE_SUSPENDED, FThreadID); 这里就用到了前面说到的Delphi RTL函数BeginThread,它有很多参数,关键的是第三、四两个参数。第三个参数就是 前面说到的线程函数,即在线程中执行的代码部分。第四个参数则是传递给线程函数的参数,在这里就是创建的线程 对象(即Self)。其它的参数中,第五个是用于设置线程在创建后即挂起,不立即执行(启动线程的工作是在 AfterConstruction中根据CreateSuspended标志来决定的),第六个是返回线程ID。
现在来看TThread的核心:线程函数ThreadProc。有意思的是这个线程类的核心却不是线程的成员,而是一个全局函数 (因为BeginThread过程的参数约定只能用全局函数)。下面是它的代码:
function ThreadProc(Thread: TThread): Integer; var FreeThread: Boolean; begin try if not Thread.Terminated then try Thread.Execute; except Thread.FFatalException := AcquireExceptionObject; end; finally FreeThread := Thread.FFreeOnTerminate; Result := Thread.FReturnValue; Thread.DoTerminate; Thread.FFinished := True; SignalSyncEvent; if FreeThread then Thread.Free; EndThread(Result); end; end; 虽然也没有多少代码,但却是整个TThread中最重要的部分,因为这段代码是真正在线程中执行的代码。下面对代码作 逐行说明: 首先判断线程类的Terminated标志,如果未被标志为终止,则调用线程类的Execute方法执行线程代码,因为TThread 是抽象类,Execute方法是抽象方法,所以本质上是执行派生类中的Execute代码。
所以说,Execute就是线程类中的线程函数,所有在Execute中的代码都需要当作线程代码来考虑,如防止访问冲突等。 如果Execute发生异常,则通过AcquireExceptionObject取得异常对象,并存入线程类的FFatalException成员中。 最后是线程结束前做的一些收尾工作。局部变量FreeThread记录了线程类的FreeOnTerminated属性的设置,然后将线 程返回值设置为线程类的返回值属性的值。然后执行线程类的DoTerminate方法。
DoTerminate方法的代码如下: procedure TThread.DoTerminate; begin if Assigned(FOnTerminate) then Synchronize(CallOnTerminate); end;
很简单,就是通过Synchronize来调用CallOnTerminate方法,而CallOnTerminate方法的代码如下,就是简单地调用 OnTerminate事件: procedure TThread.CallOnTerminate; begin if Assigned(FOnTerminate) then FOnTerminate(Self); end;
因为OnTerminate事件是在Synchronize中执行的,所以本质上它并不是线程代码,而是主线程代码(具体见后面对 Synchronize的分析)。
执行完OnTerminate后,将线程类的FFinished标志设置为True。接下来执行SignalSyncEvent过程,其代码如下: procedure SignalSyncEvent; begin SetEvent(SyncEvent); end;
也很简单,就是设置一下一个全局Event:SyncEvent,关于Event的使用,本文将在后文详述,而SyncEvent的用途将 在WaitFor过程中说明。
然后根据FreeThread中保存的FreeOnTerminate设置决定是否释放线程类,在线程类释放时,还有一些些操作,详见接 下来的析构函数实现。 最后调用EndThread结束线程,返回线程返回值。至此,线程完全结束。 说完构造函数,再来看析构函数: destructor TThread.Destroy; begin if (FThreadID <> 0) and not FFinished then begin Terminate; if FCreateSuspended then Resume; WaitFor; end; if FHandle <> 0 then CloseHandle(FHandle); inherited Destroy; FFatalException.Free; RemoveThread; end;
在线程对象被释放前,首先要检查线程是否还在执行中,如果线程还在执行中(线程ID不为0,并且线程结束标志未设 置),则调用Terminate过程结束线程。Terminate过程只是简单地设置线程类的Terminated标志,如下面的代码:
procedure TThread.Terminate; begin FTerminated := True; end;
所以线程仍然必须继续执行到正常结束后才行,而不是立即终止线程,这一点要注意。
在这里说一点题外话:很多人都问过我,如何才能“立即”终止线程(当然是指用TThread创建的线程)。结果当然是 不行!终止线程的唯一办法就是让Execute方法执行完毕,所以一般来说,要让你的线程能够尽快终止,必须在 Execute方法中在较短的时间内不断地检查Terminated标志,以便能及时地退出。这是设计线程代码的一个很重要的原 则!
当然如果你一定要能“立即”退出线程,那么TThread类不是一个好的选择,因为如果用API强制终止线程的话,最终 会导致TThread线程对象不能被正确释放,在对象析构时出现Access Violation。这种情况你只能用API或RTL函数来创 建线程。
如果线程处于启动挂起状态,则将线程转入运行状态,然后调用WaitFor进行等待,其功能就是等待到线程结束后才继 续向下执行。关于WaitFor的实现,将放到后面说明。
线程结束后,关闭线程Handle(正常线程创建的情况下Handle都是存在的),释放操作系统创建的线程对象。 然后调用TObject.Destroy释放本对象,并释放已经捕获的异常对象,最后调用RemoveThread减小进程的线程数。
其它关于Suspend/Resume及线程优先级设置等方面,不是本文的重点,不再赘述。下面要讨论的是本文的另两个重点 :Synchronize和WaitFor。
但是在介绍这两个函数之前,需要先介绍另外两个线程同步技术:事件和临界区。
事件(Event)与Delphi中的事件有所不同。从本质上说,Event其实相当于一个全局的布尔变量。它有两个赋值操作 :Set和Reset,相当于把它设置为True或False。而检查它的值是通过WaitFor操作进行。对应在Windows平台上,是三 个API函数:SetEvent、ResetEvent、WaitForSingleObject(实现WaitFor功能的API还有几个,这是最简单的一个)。
这三个都是原语,所以Event可以实现一般布尔变量不能实现的在多线程中的应用。Set和Reset的功能前面已经说过了 ,现在来说一下WaitFor的功能:
WaitFor的功能是检查Event的状态是否是Set状态(相当于True),如果是则立即返回,如果不是,则等待它变为Set 状态,在等待期间,调用WaitFor的线程处于挂起状态。另外WaitFor有一个参数用于超时设置,如果此参数为0,则不 等待,立即返回Event的状态,如果是INFINITE则无限等待,直到Set状态发生,若是一个有限的数值,则等待相应的 毫秒数后返回Event的状态。
当Event从Reset状态向Set状态转换时,唤醒其它由于WaitFor这个Event而挂起的线程,这就是它为什么叫Event的原 因。所谓“事件”就是指“状态的转换”。通过Event可以在线程间传递这种“状态转换”信息。
当然用一个受保护(见下面的临界区介绍)的布尔变量也能实现类似的功能,只要用一个循环检查此布尔值的代码来 代替WaitFor即可。从功能上说完全没有问题,但实际使用中就会发现,这样的等待会占用大量的CPU资源,降低系统 性能,影响到别的线程的执行速度,所以是不经济的,有的时候甚至可能会有问题。所以不建议这样用。
临界区(CriticalSection)则是一项共享数据访问保护的技术。它其实也是相当于一个全局的布尔变量。但对它的操 作有所不同,它只有两个操作:Enter和Leave,同样可以把它的两个状态当作True和False,分别表示现在是否处于临 界区中。这两个操作也是原语,所以它可以用于在多线程应用中保护共享数据,防止访问冲突。
用临界区保护共享数据的方法很简单:在每次要访问共享数据之前调用Enter设置进入临界区标志,然后再操作数据, 最后调用Leave离开临界区。它的保护原理是这样的:当一个线程进入临界区后,如果此时另一个线程也要访问这个数 据,则它会在调用Enter时,发现已经有线程进入临界区,然后此线程就会被挂起,等待当前在临界区的线程调用 Leave离开临界区,当另一个线程完成操作,调用Leave离开后,此线程就会被唤醒,并设置临界区标志,开始操作数 据,这样就防止了访问冲突。
以前面那个InterlockedIncrement为例,我们用CriticalSection(Windows API)来实现它: Var InterlockedCrit : TRTLCriticalSection; Procedure InterlockedIncrement( var aValue : Integer ); Begin EnterCriticalSection( InterlockedCrit ); Inc( aValue ); LeaveCriticalSection( InterlockedCrit ); End;
现在再来看前面那个例子: 1. 线程A进入临界区(假设数据为3) 2. 线程B进入临界区,因为A已经在临界区中,所以B被挂起 3. 线程A对数据加一(现在是4) 4. 线程A离开临界区,唤醒线程B(现在内存中的数据是4) 5. 线程B被唤醒,对数据加一(现在就是5了) 6. 线程B离开临界区,现在的数据就是正确的了。
临界区就是这样保护共享数据的访问。
关于临界区的使用,有一点要注意:即数据访问时的异常情况处理。因为如果在数据操作时发生异常,将导致Leave操 作没有被执行,结果将使本应被唤醒的线程未被唤醒,可能造成程序的没有响应。所以一般来说,如下面这样使用临 界区才是正确的做法:
EnterCriticalSection Try // 操作临界区数据 Finally LeaveCriticalSection End;
最后要说明的是,Event和CriticalSection都是操作系统资源,使用前都需要创建,使用完后也同样需要释放。如 TThread类用到的一个全局Event:SyncEvent和全局CriticalSection:TheadLock,都是在 InitThreadSynchronization和DoneThreadSynchronization中进行创建和释放的,而它们则是在Classes单元的 Initialization和Finalization中被调用的。
由于在TThread中都是用API来操作Event和CriticalSection的,所以前面都是以API为例,其实Delphi已经提供了对它 们的封装,在SyncObjs单元中,分别是TEvent类和TCriticalSection类。用法也与前面用API的方法相差无几。因为 TEvent的构造函数参数过多,为了简单起见,Delphi还提供了一个用默认参数初始化的Event类:TSimpleEvent。
顺便再介绍一下另一个用于线程同步的类:TMultiReadExclusiveWriteSynchronizer,它是在SysUtils单元中定义的 。据我所知,这是Delphi RTL中定义的最长的一个类名,还好它有一个短的别名:TMREWSync。至于它的用处,我想光 看名字就可以知道了,我也就不多说了。
有了前面对Event和CriticalSection的准备知识,可以正式开始讨论Synchr
|
请发表评论