在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
虽然这个不是我写的 但是这个粒子群是二维的 之前的是一维的。 main.m clear all; close all; clc; [x y]=meshgrid(-100:100,-100:100); sigma=50; img = (1/(2*pi*sigma^2))*exp(-(x.^2+y.^2)/(2*sigma^2)); %目标函数,高斯函数 mesh(img); hold on; n=10; %粒子群粒子个数 %初始化粒子群,定义结构体 %结构体中八个元素,分别是粒子坐标,粒子速度,粒子适应度,粒子最佳适应度,粒子最佳坐标 par=struct([]); for i=1:n par(i).x=-100+200*rand(); %[-100 100]对x位置随机初始化 par(i).y=-100+200*rand(); %[-100 100]对y位置随机初始化 par(i).vx=-1+2*rand(); %[-1 1]对vx速度随机初始化 par(i).vy=-1+2*rand(); %[-1 1]对vy速度随机初始化 par(i).fit=0; %粒子适应度为0初始化 par(i).bestfit=0; %粒子最佳适应度为0初始化 par(i).bestx=par(i).x; %粒子x最佳位置初始化 par(i).besty=par(i).y; %粒子y最佳位置初始化 end par_best=par(1); %初始化粒子群中最佳粒子 for k=1:10 plot3(par_best.x+100,par_best.y+100,par_best.fit,'g*'); %画出最佳粒子的位置,+100为相对偏移 for p=1:n [par(p) par_best]=update_par(par(p),par_best); %更新每个粒子信息 end end update_par.m function [par par_best]=update_par(par,par_best) %Px=Px+Pv*t,这里t=1,Px为当前粒子的位置,Pv为当前粒子的速度 par.x=par.x+par.vx; par.y=par.x+par.vy; par.fit=compute_fit(par); %计算当前粒子适应度 %Pv=Pv+(c1*rand*(Gx-Px))+(c2*rand*(PBx-Px)) %这里c1,c2为加速因子 %Gx为具有最佳适应度粒子的位置 %PBx为当前粒子的最佳位置 c1=1; c2=1; par.vx=par.vx+c1*rand()*(par_best.x-par.x)+c2*rand()*(par.bestx-par.x); par.vy=par.vy+c1*rand()*(par_best.y-par.y)+c2*rand()*(par.besty-par.y); if par.fit>par.bestfit %如果当前粒子适应度要好于当前粒子最佳适应度 par.bestfit=par.fit; %则更新当前粒子最佳适应度 par.bestx=par.x; %更新当前粒子最佳位置 par.besty=par.y; if par.bestfit>par_best.fit %如果当前粒子最佳适应度好于最佳粒子适应度 par_best.fit=par.bestfit; %则更新最佳粒子适应度 par_best.x=par.x; %更新最佳粒子位置 par_best.y=par.y; end end end
compute_fit.m function re=compute_fit(par) x=par.x; y=par.y; sigma=50; if x<-100 || x>100 || y<-100 || y>100 re=0; %超出范围适应度为0 else %否则适应度按目标函数求解 re= (1/(2*pi*sigma^2))*exp(-(x.^2+y.^2)/(2*sigma^2)); end end
|
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论