• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

DelphiHexandBin转换

原作者: [db:作者] 来自: [db:来源] 收藏 邀请
Hex formats

Intel
=====

Hexadecimal values are always in uppercase. Each line is a record.
The sum of all the bytes in each record should be 00 (modulo 256).

Record types:

00: data records
01: end-of-file record
02: extended address record

Data record
-----------

    :0D011C0000000000C3E0FF0000000000C30F

: 0D 011C 00 00000000C3E0FF0000000000C3 0F
|  |   |   | -------------+------------  |
|  |   |   |              |              +--- Checksum
|  |   |   |              +------------------ Data bytes
|  |   |   +--------------------------------- Record type
|  |   +------------------------------------- Address
|  +----------------------------------------- Number of data bytes
+-------------------------------------------- Start of record


End of file record
------------------

    :00000001FE

: 00 0000 01 FE
|  |   |   |  |
|  |   |   |  +--- Checksum
|  |   |   +------ Record type
|  |   +---------- Address
|  +-------------- Number of data bytes
+----------------- Start of record



Extended address record
-----------------------

    :02010002E0001B

: 02 0100 02 E000 1B
|  |   |   |  |    |
|  |   |   |  |    +--- Checksum
|  |   |   |  +-------- Segment address
|  |   |   +----------- Record type
|  |   +--------------- Address
|  +------------------- Number of data bytes
+---------------------- Start of record

Following data records will start at E000:0100 or E0100

 

(* -----------------------------------------------------------------------------

  http://www.keil.com/support/docs/1584/

  What is the Intel HEX file format?

  The Intel HEX file is an ASCII text file with lines of text that follow
  the Intel HEX file format.
  Each line in an Intel HEX file contains one HEX record.
  These records are made up of hexadecimal numbers that represent machine
  language code and/or constant data.
  Intel HEX files are often used to transfer the program and data that
  would be stored in a ROM or EPROM.
  Most EPROM programmers or emulators can use Intel HEX files.

  ------------------------------------------------------------------------------
  Record Format
  ------------------------------------------------------------------------------
  An Intel HEX file is composed of any number of HEX records.
  Each record is made up of five fields that are arranged in the following format:

  :llaaaatt[dd...]cc

  Each group of letters corresponds to a different field,
  and each letter represents a single hexadecimal digit.
  Each field is composed of at least two hexadecimal digits-which
  make up a byte-as described below:

  ------------------------------------------------------------------------------
  : is the colon that starts every Intel HEX record.

  ------------------------------------------------------------------------------
  ll is the record-length field that
  represents the number of data bytes (dd) in the record.

  ------------------------------------------------------------------------------
  aaaa is the address field that represents the starting address for
  subsequent data in the record.

  ------------------------------------------------------------------------------
  tt is the field that represents the HEX record type,
  which may be one of the following:
  00 - data record

  01 - end-of-file record :00000001FF ( :00AB2F0125 : Jump 0xAB2F )

  02 - extended segment address record :02-0000-02-FFFF-FC : 0x000FFFF0

  03 - start segment address record :04-0000-03-0000-00CD-2A : CS-IP

  04 - extended linear address record :02-0000-04-FFFF-FC : 0xFFFF0000

  05 - start linear address record :04-0000-05-000000CD-2A : EIP

  ------------------------------------------------------------------------------
  dd is a data field that represents one byte of data.
  A record may have multiple data bytes. The number of data bytes in the record
  must match the number specified by the ll field.

  ------------------------------------------------------------------------------
  cc is the checksum field that represents the checksum of the record.
  The checksum is calculated by summing the values of
  all hexadecimal digit pairs in the record modulo 256
  and taking the two's complement.

  --------------------------------------------------------------------------------
  Data Records
  --------------------------------------------------------------------------------

  The Intel HEX file is made up of any number of data records that are terminated
  with a carriage return and a linefeed. Data records appear as follows:

  :10246200464C5549442050524F46494C4500464C33

  This record is decoded as follows:

  : 10 2462 00 464C5549442050524F46494C4500464C 33

  where:

  10 is the number of data bytes in the record.
  2462 is the address where the data are to be located in memory.
  00 is the record type 00 (a data record).
  464C...464C is the data.
  33 is the checksum of the record.


  ------------------------------------------------------------------------------
  Extended Linear Address Records (HEX386)
  ------------------------------------------------------------------------------
  Extended linear address records are also known as 32-bit address records
  and HEX386 records. These records contain the upper 16 bits (bits 16-31)
  of the data address. The extended linear address record always
  has two data bytes and appears as follows:

  :02000004FFFFFC

  where:

  02 is the number of data bytes in the record.

  0000 is the address field.
  For the extended linear address record, this field is always 0000.

  04 is the record type 04 (an extended linear address record).

  FFFF is the upper 16 bits of the address.

  FC is the checksum of the record and is calculated as
  01h + NOT(02h + 00h + 00h + 04h + FFh + FFh).

  When an extended linear address record is read,
  the extended linear address stored in the data field is saved
  and is applied to subsequent records read from the Intel HEX file.

  The linear address remains effective until changed
  by another extended address record.

  The absolute-memory address of a data record is obtained
  by adding the address field in the record to the shifted address data
  from the extended linear address record.

  The following example illustrates this process..

  Address from the data record's address field      2462
  Extended linear address record data field     FFFF
  ------------------------------------------------------------------------------
  Absolute-memory address                       FFFF2462


  ------------------------------------------------------------------------------
  Extended Segment Address Records (HEX86)
  ------------------------------------------------------------------------------

  Extended segment address records-also known as HEX86 records-contain bits 4-19
  of the data address segment.

  The extended segment address record always
  has two data bytes and appears as follows:

  :020000021200EA

  where:

  02 is the number of data bytes in the record.

  0000 is the address field.
  For the extended segment address record, this field is always 0000.

  02 is the record type 02 (an extended segment address record).

  1200 is the segment of the address.

  EA is the checksum of the record and is calculated as
  01h + NOT(02h + 00h + 00h + 02h + 12h + 00h).

  When an extended segment address record is read,
  the extended segment address stored in the data field
  is saved and is applied to subsequent records read from the Intel HEX file.

  The segment address remains effective until changed
  by another extended address record.

  The absolute-memory address of a data record is obtained
  by adding the address field in the record to the shifted-address data
  from the extended segment address record.

  The following example illustrates this process.

  Address from the data record's address field     2462
  Extended segment address record data field      1200
  --------
  Absolute memory address                      00014462

  ------------------------------------------------------------------------------
  End-of-File (EOF) Records
  ------------------------------------------------------------------------------
  An Intel HEX file must end with an end-of-file (EOF) record.
  This record must have the value 01 in the record type field.
  An EOF record always appears as follows:

  :00000001FF

  where:

  00 is the number of data bytes in the record.
  0000 is the address where the data are to be located in memory.
  The address in end-of-file records is meaningless and is ignored.
  An address of 0000h is typical.
  01 is the record type 01 (an end-of-file record).
  FF is the checksum of the record and is calculated as
  01h + NOT(00h + 00h + 00h + 01h).


  ------------------------------------------------------------------------------
  Example Intel HEX File
  ------------------------------------------------------------------------------
  Following is an example of a complete Intel HEX file:

  :10001300AC12AD13AE10AF1112002F8E0E8F0F2244
  :10000300E50B250DF509E50A350CF5081200132259
  :03000000020023D8
  :0C002300787FE4F6D8FD7581130200031D
  :10002F00EFF88DF0A4FFEDC5F0CEA42EFEEC88F016
  :04003F00A42EFE22CB
  :00000001FF

  : 02 0000 04 2000             DA        : 2000 is the upper 16 bits of address.
  : 08 1264 00 0000A0E31EFF2FE1 D2        : 1264 is the lower 16 bits of address.
  : 00 0000 01                  FF        : Enf of File

  ’00’ Data Record <=We use this record
  ’01’ End of File Record <=We use this record

  ’02’ Extended Segment Address Record  : BaseAddr = ( SegAddr<<4 )
  ’03’ Start Segment Address Record     : Value of the CS:IP ( >>80286 )
  ’04’ Extended Linear Address Record   : BaseAddr = ( LinearAddr<<16 )
  ’05’ Start Linear Address Record      : Value of the EIP ( 80386>> )

  Sometimes the terms I8HEX, I16HEX, I32HEX, resp. INTEL 8/16/32 are used,
  usually in the context of x86 CPUs.
  The format of the files are all the same, but the terms imply using a particular
  subset of the possible record types:

  I8HEX uses only types 00/01 (16 bit addresses),
  I16HEX adds types 02/03 (20 bit addresses), and
  I32HEX adds 04/05 (32 bit addresses).

  --------------------------------------------------------------------------- *)
unit uIntelHex;

interface

uses
  System.SysUtils, System.Classes, Windows;

const
  HEX_ERROR_MARKER = 1;
  HEX_ERROR_ADDRESS = 2;
  HEX_ERROR_REC_TYPE = 3;
  HEX_ERROR_SECTION_SIZE = 4;
  HEX_ERROR_DATA = 5;
  HEX_ERROR_CHECK_SUM = 6;
  HEX_ERROR_SECTION_COUNT = 7;

type
  EHex2Bin = class( Exception )
  private
    FCode : integer;
  public
    constructor Create( ACode : integer );
    property Code : integer read FCode write FCode;
  end;

type
  TXxx2Bin = procedure( TxtStringList : TStringList; BinStream : TMemoryStream;
    var StartAddress : int64 );

procedure Txt2Bin( TxtStringList : TStringList; BinStream : TMemoryStream;
  var StartAddress : int64 );
procedure Hex2Bin( HexStringList : TStringList; BinStream : TMemoryStream;
  var StartAddress : int64 );
procedure Bin2Hex( BinStream : TMemoryStream; HexStringList : TStringList;
  StartAddress : int64 );

implementation

const
  ONE_RECORD_SIZE = 16;
  ONE_SECTION_SIZE = 64 * 1024;
  MAX_SECTION_COUNT = 16;
  MAX_BUFFER_SIZE = MAX_SECTION_COUNT * ONE_SECTION_SIZE;

type
  // Different possible records for Intel .hex files.
  TRecType = ( rtData = 0, // data
    rtEof = 1, // End Of File
    rtEsa = 2, // Extended Segment Address
    rtSsa = 3, // Start Segment Address
    rtEla = 4, // Extended Linear Address
    rtSla = 5 ); // Start Linear Address

  THexRec = record
    Marker : BYTE; // : Valid, other Invalid
    DataSize : BYTE;
    Addr : Word;
    RecType : TRecType;
    DataBuf : array [ 0 .. 255 ] of BYTE;
    CheckSum : BYTE;
  end;

  THexSection = record
    LinearAddress : DWORD;
    UsedOffset : DWORD;
    UnusedOffset : DWORD;
    DataBuffer : array [ 0 .. ONE_SECTION_SIZE - 1 ] of BYTE;
  end;

var
  HexSections : array [ 0 .. MAX_SECTION_COUNT - 1 ] of THexSection;
  Hex2BinErrorMessage : array [ HEX_ERROR_MARKER .. HEX_ERROR_SECTION_COUNT ]
    of string; // error messages

constructor EHex2Bin.Create( ACode : integer );
begin
  FCode := ACode;
  inherited Create( Hex2BinErrorMessage[ ACode ] );
end;

// : 10 0013 00 AC12AD13AE10AF1112002F8E0E8F0F22 44
// \_________________________________________/ CS
//
// The checksum is calculated by summing the values of all hexadecimal digit
// pairs in the record modulo 256  and taking the two's complement
//
function HexCalcCheckSum( HexRec : THexRec ) : BYTE;
var
  i : integer;
begin
  Result := HexRec.DataSize + HexRec.Addr + ( HexRec.Addr shr 8 ) +
    BYTE( HexRec.RecType );
  for i := 0 to HexRec.DataSize - 1 do
    Inc( Result, HexRec.DataBuf[ i ] );

  // Result := -Integer(Result);
  Result := ( not Result ) + 1;
end;

function HexRec2Str( HexRec : THexRec ) : string;
var
  i : integer;
begin
  Result := ':' + IntToHex( HexRec.DataSize, 2 ) + IntToHex( HexRec.Addr, 4 ) +
    IntToHex( Ord( HexRec.RecType ), 2 );
  for i := 0 to HexRec.DataSize - 1 do
    Result := Result + IntToHex( HexRec.DataBuf[ i ], 2 );
  Result := Result + IntToHex( HexCalcCheckSum( HexRec ), 2 );
end;

// 1 23 4567 89 ABCDEF.............................
// : 10 0013 00 AC12AD13AE10AF1112002F8E0E8F0F22 44
//
function HexStr2Rec( HexStr : string ) : THexRec;
var
  i : integer;
begin
  Result.Marker := Ord( HexStr[ 1 ] );
  if Result.Marker <> Ord( ':' ) then
    raise EHex2Bin.Create( HEX_ERROR_MARKER );

  try
    Result.DataSize := StrToInt( '$' + Copy( HexStr, 2, 2 ) );
    Result.Addr := StrToInt( '$' + Copy( HexStr, 4, 4 ) );
    Result.RecType := TRecType( StrToInt( '$' + Copy( HexStr, 8, 2 ) ) );
    for i := 0 to Result.DataSize - 1 do
      Result.DataBuf[ i ] := StrToInt( '$' + Copy( HexStr, 10 + i * 2, 2 ) );

    Result.CheckSum :=
      StrToInt( '$' + Copy( HexStr, 10 + Result.DataSize * 2, 2 ) );
  except
    raise EHex2Bin.Create( HEX_ERROR_DATA );
  end;

  if Result.CheckSum <> HexCalcCheckSum( Result ) then
    raise EHex2Bin.Create( HEX_ERROR_CHECK_SUM );
end;

procedure Bin2Hex( BinStream : TMemoryStream; HexStringList : TStringList;
  StartAddress : int64 );
var
  HexRec : THexRec;
  BufferSize : DWORD;
  SectionSize : DWORD;
  RecordSize : DWORD;
  SectionAddr : DWORD;
  LinearAddr : DWORD;
begin
  SectionAddr := 0;
  LinearAddr := 0;
  BufferSize := BinStream.Size;
  SectionSize := BufferSize;
  BinStream.Seek( 0, soBeginning );

  while BufferSize > 0 do
  begin
    // Write Linear Address
    if ( StartAddress <> 0 ) or ( SectionSize = 0 ) then
    begin
      if ( StartAddress <> 0 ) then // first section
      begin
        SectionAddr := StartAddress and ( ONE_SECTION_SIZE - 1 );
        SectionSize := ONE_SECTION_SIZE - SectionAddr;
        LinearAddr := StartAddress shr 16;
        StartAddress := 0;
      end
      else // if ( SectionSize = 0 ) then
      begin
        SectionAddr := 0;
        SectionSize := BufferSize;
        LinearAddr := LinearAddr + 1;
      end;

      HexRec.DataSize := 2;
      HexRec.Addr := 0;
      HexRec.RecType := rtEla;
      HexRec.DataBuf[ 0 ] := LinearAddr shr 8;
      HexRec.DataBuf[ 1 ] := LinearAddr and $FF;
      HexStringList.Add( HexRec2Str( HexRec ) );

    end
    else // Write Data Record
    begin
      RecordSize := SectionSize;
      if RecordSize > ONE_RECORD_SIZE then
        RecordSize := ONE_RECORD_SIZE;

      HexRec.DataSize := RecordSize;
      HexRec.Addr := SectionAddr;
      HexRec.RecType := rtData;
      BinStream.Read( HexRec.DataBuf[ 0 ], RecordSize );
      HexStringList.Add( HexRec2Str( HexRec ) );

      SectionAddr := SectionAddr + RecordSize;
      SectionSize := SectionSize - RecordSize;
      BufferSize := BufferSize - RecordSize;
    end;
  end;

  // Write EOF :00000001FF
  HexRec.DataSize := 0;
  HexRec.Addr := 0;
  HexRec.RecType := rtEof;
  HexStringList.Add( HexRec2Str( HexRec ) );
end;

procedure Hex2Bin( HexStringList : TStringList; BinStream : TMemoryStream;
  var StartAddress : int64 );
var
  i : integer;
  LastAddress : int64;
  HexRec : THexRec;
  SectionFreeAddr : DWORD;
  SectionIndex : DWORD;
  SizeToWrite : DWORD;
  BufferToWrite : Pointer;
  LinearAddress : DWORD;
  FirstLinearAddr : DWORD;
  LastLinearAddr : DWORD;
  FirstUsedDataOffset : DWORD; // First Section : $0000
  LastUnusedDataOffset : DWORD; // Last Section : $10000
begin
  for i := 0 to MAX_SECTION_COUNT - 1 do // Mark as Unused
  begin
    HexSections[ i ].LinearAddress := $0000;
    HexSections[ i ].UnusedOffset := $0000;
    HexSections[ i ].UsedOffset := ONE_SECTION_SIZE;
    FillChar( HexSections[ i ].DataBuffer[ 0 ], ONE_SECTION_SIZE, $FF );
  end;

  SectionIndex := 0;
  for i := 0 to HexStringList.Count - 1 do
  begin
    HexRec := HexStr2Rec( HexStringList[ i ] );
    case HexRec.RecType of
      rtEof :
        break;
      rtSsa, rtEsa, rtSla :
        continue;
      rtEla :
        begin
          LinearAddress := HexRec.DataBuf[ 0 ] * 256 + HexRec.DataBuf[ 1 ];
          if HexSections[ SectionIndex ].LinearAddress <> LinearAddress then
          begin
            if ( i <> 0 ) then
              SectionIndex := SectionIndex + 1;
            if ( SectionIndex = MAX_SECTION_COUNT ) then
              raise EHex2Bin.Create( HEX_ERROR_SECTION_COUNT );

            HexSections[ SectionIndex ].LinearAddress := LinearAddress;
          end;
        end;

      rtData :
        begin
          SectionFreeAddr := HexRec.Addr + HexRec.DataSize; // ONE_SECTION_SIZE
          if SectionFreeAddr > ONE_SECTION_SIZE then
            raise EHex2Bin.Create( HEX_ERROR_SECTION_SIZE );
          if HexSections[ SectionIndex ].UnusedOffset < SectionFreeAddr then
            HexSections[ SectionIndex ].UnusedOffset := SectionFreeAddr;
          if HexSections[ SectionIndex ].UsedOffset > HexRec.Addr then
            HexSections[ SectionIndex ].UsedOffset := HexRec.Addr;
          CopyMemory( @HexSections[ SectionIndex ].DataBuffer[ HexRec.Addr ],
            @HexRec.DataBuf[ 0 ], HexRec.DataSize );
        end;
    end;
  end;

  FirstLinearAddr := $10000;
  LastLinearAddr := 0;
  FirstUsedDataOffset := 0;
  LastUnusedDataOffset := ONE_SECTION_SIZE;

  for i := 0 to SectionIndex do
  begin
    if HexSections[ i ].LinearAddress > LastLinearAddr then
    begin
      LastLinearAddr := HexSections[ i ].LinearAddress;
      LastUnusedDataOffset := HexSections[ i ].UnusedOffset;
    end;
    if HexSections[ i ].LinearAddress < FirstLinearAddr then
    begin
      FirstLinearAddr := HexSections[ i ].LinearAddress;
      FirstUsedDataOffset := HexSections[ i ].UsedOffset;
    end;
  end;

  StartAddress := DWORD( FirstLinearAddr ) shl 16;
  StartAddress := StartAddress + FirstUsedDataOffset;

  LastAddress := DWORD( LastLinearAddr ) shl 16;
  LastAddress := LastAddress + LastUnusedDataOffset;

  BinStream.Clear;
  BinStream.SetSize( LastAddress - StartAddress );

  // Write Every Section ( include unused sections : FF .. FF )
  for i := 0 to SectionIndex do
  begin
    if HexSections[ i ].LinearAddress = FirstLinearAddr then
    begin
      SizeToWrite := ONE_SECTION_SIZE - HexSections[ i ].UsedOffset;
      if SizeToWrite > BinStream.Size then
        SizeToWrite := BinStream.Size;

      BufferToWrite := @HexSections[ i ].DataBuffer
        [ HexSections[ i ].UsedOffset ];
    end
    else if HexSections[ i ].LinearAddress = LastLinearAddr then
    begin
      SizeToWrite := HexSections[ i ].UnusedOffset;
      BufferToWrite := @HexSections[ i ].DataBuffer[ 0 ];
    end
    else
    begin
      SizeToWrite := ONE_SECTION_SIZE;
      BufferToWrite := @HexSections[ i ].DataBuffer[ 0 ];
    end;
    BinStream.Write( BufferToWrite^, SizeToWrite );
  end;

end;

function HexStr2Int( HexStr : PChar; var AByte : BYTE ) : boolean;
begin
  Result := FALSE;
  if ( HexStr[ 0 ] = '0' ) then
    if ( ( HexStr[ 1 ] = 'x' ) or ( HexStr[ 1 ] = 'X' ) ) then
      Exit;

  if CharInSet( HexStr[ 0 ], [ '0' .. '9', 'A' .. 'F', 'a' .. 'f' ] ) then
  begin
    if CharInSet( HexStr[ 1 ], [ '0' .. '9', 'A' .. 'F', 'a' .. 'f' ] ) then
    begin
      AByte := StrToInt( '$' + HexStr[ 0 ] + HexStr[ 1 ] );
      Result := TRUE;
    end;
  end;
end;

procedure Txt2Bin( TxtStringList : TStringList; BinStream : TMemoryStream;
  var StartAddress : int64 ); // dont care StartAddress
var
  CharIndex : DWORD;
  SectionIndex : DWORD;
  SectionOffset : DWORD;
  TextStr : string;
  BinSize : DWORD;
  AByte : BYTE;
  SizeToWrite : DWORD;
begin
  TextStr := '';
  for SectionOffset := 0 to TxtStringList.Count - 1 do
    TextStr := TextStr + TxtStringList[ SectionOffset ];

  SectionIndex := 0;
  SectionOffset := 0;
  CharIndex := 1;
  BinSize := 0;

  while CharIndex < Length( TextStr ) do
  begin
    if not HexStr2Int( @TextStr[CharIndex], AByte ) then
    begin
      Inc( CharIndex, 1 );
      continue;
    end;

    HexSections[ SectionIndex ].DataBuffer[ SectionOffset ] := AByte;
    Inc( BinSize, 1 );
    Inc( SectionOffset, 1 );
    if SectionOffset = ONE_SECTION_SIZE then
      Inc( SectionIndex, 1 );
    if SectionIndex = MAX_SECTION_COUNT then
      break;

    Inc( CharIndex, 2 );
  end;

  BinStream.SetSize( BinSize );
  while BinSize > 0 do
  begin
    SizeToWrite := BinSize;
    if SizeToWrite > ONE_SECTION_SIZE then
      SizeToWrite := ONE_SECTION_SIZE;
    BinStream.Write( HexSections[ SectionIndex ].DataBuffer[ 0 ], SizeToWrite );
    Inc( SectionIndex );
    BinSize := BinSize - SizeToWrite;
  end;
end;

initialization

Hex2BinErrorMessage[ HEX_ERROR_MARKER ] := 'Error Marker';
Hex2BinErrorMessage[ HEX_ERROR_ADDRESS ] := 'Error Address';
Hex2BinErrorMessage[ HEX_ERROR_REC_TYPE ] := 'Error Type';
Hex2BinErrorMessage[ HEX_ERROR_SECTION_SIZE ] := 'Error Section Size';
Hex2BinErrorMessage[ HEX_ERROR_DATA ] := 'Error Data';
Hex2BinErrorMessage[ HEX_ERROR_CHECK_SUM ] := 'Error CheckSum';
Hex2BinErrorMessage[ HEX_ERROR_SECTION_COUNT ] := 'Error Section Count';

end.

 


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap