在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
以下是一篇很值得看的关于Delphi多线程编程的文章,内容很全面,建议收藏。 一、入门 ㈠、 function CreateThread( lpThreadAttributes: Pointer; {安全设置} dwStackSize: DWORD; {堆栈大小} lpStartAddress: TFNThreadStartRoutine; {入口函数} lpParameter: Pointer; {函数参数} dwCreationFlags: DWORD; {启动选项} var lpThreadId: DWORD {输出线程 ID } ): THandle; stdcall; {返回线程句柄} 在 Windows 上建立一个线程, 离不开 CreateThread 函数; TThread.Create 就是先调用了 BeginThread (Delphi 自定义的), BeginThread 又调用的 CreateThread. 既然有建立, 就该有释放, CreateThread 对应的释放函数是: ExitThread, 譬如下面代码: procedure TForm1.Button1Click(Sender: TObject); begin ExitThread(0); {此句即可退出当前程序, 但不建议这样使用} end; 代码注释: 当前程序是一个进程, 进程只是一个工作环境, 线程是工作者; 每个进程都会有一个启动线程(或叫主线程), 也就是说: 我们之前大量的编码都是写给这个主线程的; 上面的 ExitThread(0); 就是退出这个主线程; 系统不允许一个没有线程的进程存在, 所以程序就退出了. 另外: ExitThread 函数的参数是一个退出码, 这个退出码是给之后的其他函数用的, 这里随便给个无符号整数即可.
或许你会说: 这个 ExitThread 挺好用的; 其实不管是用 API 还是用 TThread 类写多线程, 我们很少用到它; 因为: 1、假如直接使用 API 的 CreateThread, 它执行完入口函数后会自动退出, 无需 ExitThread; 2、用 TThread 类建立的线程又绝不能使用 ExitThread 退出; 因为使用 TThread 建立线程时会同时分配更多资源(譬如你自定义的成员、还有它的祖先类(TObject)分配的资源等等), 如果用 ExitThread 给草草退出了, 这些资源将得不到释放而导致内存泄露. 尽管 Delphi 提供了 EndThread(其内部调用 ExitThread), 这也不需要我们手动操作(假如非要手动操作也是件很麻烦的事情, 因为很多时候你不知道线程是什么时候执行完毕的). 除了 CreateThread, 还有一个 CreateRemoteThread, 可在其他进程中建立线程, 这不应该是现在学习的重点; 现在先集中精力把 CreateThread 的参数搞彻底.
倒着来吧, 先谈谈 CreateThread 将要返回的 "线程句柄".
"句柄" 类似指针, 但通过指针可读写对象, 通过句柄只是使用对象; 有句柄的对象一般都是系统级别的对象(或叫内核对象); 之所以给我们的是句柄而不是指针, 目的只有一个: "安全"; 貌似通过句柄能做很多事情, 但一般把句柄提交到某个函数(一般是系统函数)后, 我们也就到此为止很难了解更多了; 事实上是系统并不相信我们.
不管是指针还是句柄, 都不过是内存中的一小块数据(一般用结构描述), 微软并没有公开句柄的结构细节, 猜一下它应该包括: 真实的指针地址、访问权限设置、引用计数等等.
既然 CreateThread 可以返回一个句柄, 说明线程属于 "内核对象". 实际上不管线程属于哪个进程, 它们在系统的怀抱中是平等的; 在优先级(后面详谈)相同的情况下, 系统会在相同的时间间隔内来运行一下每个线程, 不过这个间隔很小很小, 以至于让我们误以为程序是在不间断地运行.
这时你应该有一个疑问: 系统在去执行其他线程的时候, 是怎么记住前一个线程的数据状态的? 有这样一个结构 TContext, 它基本上是一个 CPU 寄存器的集合, 线程是数据就是通过这个结构切换的, 我们也可以通过 GetThreadContext 函数读取寄存器看看.
附上这个结构 TContext(或叫: CONTEXT、_CONTEXT) 的定义: PContext = ^TContext; _CONTEXT = record ContextFlags: DWORD; Dr0: DWORD; Dr1: DWORD; Dr2: DWORD; Dr3: DWORD; Dr6: DWORD; Dr7: DWORD; FloatSave: TFloatingSaveArea; SegGs: DWORD; SegFs: DWORD; SegEs: DWORD; SegDs: DWORD; Edi: DWORD; Esi: DWORD; Ebx: DWORD; Edx: DWORD; Ecx: DWORD; Eax: DWORD; Ebp: DWORD; Eip: DWORD; SegCs: DWORD; EFlags: DWORD; Esp: DWORD; SegSs: DWORD; end; CreateThread 的最后一个参数是 "线程的 ID"; 既然可以返回句柄, 为什么还要输出这个 ID? 现在我知道的是: 1、线程的 ID 是唯一的; 而句柄可能不只一个, 譬如可以用 GetCurrentThread 获取一个伪句柄、可以用 DuplicateHandle 复制一个句柄等等. 2、ID 比句柄更轻便.
在主线程中 GetCurrentThreadId、MainThreadID、MainInstance 获取的都是主线程的 ID. ㈡、启动选项 function CreateThread( lpThreadAttributes: Pointer; dwStackSize: DWORD; lpStartAddress: TFNThreadStartRoutine; lpParameter: Pointer; dwCreationFlags: DWORD; {启动选项} var lpThreadId: DWORD ): THandle; stdcall; CreateThread 的倒数第二个参数 dwCreationFlags(启动选项) 有两个可选值: 0: 线程建立后立即执行入口函数; CREATE_SUSPENDED: 线程建立后会挂起等待.
可用 ResumeThread 函数是恢复线程的运行; 可用 SuspendThread 再次挂起线程. 这两个函数的参数都是线程句柄, 返回值是执行前的挂起计数.
什么是挂起计数? SuspendThread 会给这个数 +1; ResumeThread 会给这个数 -1; 但这个数最小是 0. 当这个数 = 0 时, 线程会运行; > 0 时会挂起. 如果被 SuspendThread 多次, 同样需要 ResumeThread 多次才能恢复线程的运行.
在下面的例子中, 有新线程不断给一个全局变量赋随机值; 同时窗体上的 Timer 控件每隔 1/10 秒就把这个变量写在窗体标题; 在这个过程中演示了 ResumeThread、SuspendThread 两个函数.
//上面图片中演示的代码。 unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls, ExtCtrls; type TForm1 = class(TForm) Button1: TButton; Button2: TButton; Button3: TButton; Timer1: TTimer; procedure Button1Click(Sender: TObject); procedure Button2Click(Sender: TObject); procedure Button3Click(Sender: TObject); procedure FormCreate(Sender: TObject); procedure Timer1Timer(Sender: TObject); end; var Form1: TForm1; implementation {$R *.dfm} var hThread: THandle; {线程句柄} num: Integer; {全局变量, 用于记录随机数} {线程入口函数} function MyThreadFun(p: Pointer): Integer; stdcall; begin while True do {假如线程不挂起, 这个循环将一直循环下去} begin num := Random(100); end; Result := 0; end; {建立并挂起线程} procedure TForm1.Button1Click(Sender: TObject); var ID: DWORD; begin hThread := CreateThread(nil, 0, @MyThreadFun, nil, CREATE_SUSPENDED, ID); Button1.Enabled := False; end; {唤醒并继续线程} procedure TForm1.Button2Click(Sender: TObject); begin ResumeThread(hThread); end; {挂起线程} procedure TForm1.Button3Click(Sender: TObject); begin SuspendThread(hThread); end; procedure TForm1.FormCreate(Sender: TObject); begin Timer1.Interval := 100; end; procedure TForm1.Timer1Timer(Sender: TObject); begin Text := IntToStr(num); end; end. ㈢、入口函数的参数 function CreateThread( lpThreadAttributes: Pointer; dwStackSize: DWORD; lpStartAddress: TFNThreadStartRoutine; lpParameter: Pointer; {入口函数的参数} dwCreationFlags: DWORD; var lpThreadId: DWORD ): THandle; stdcall; 线程入口函数的参数是个无类型指针(Pointer), 用它可以指定任何数据; 本例是把鼠标点击窗体的坐标传递给线程的入口函数, 每次点击窗体都会创建一个线程.
运行效果图: //上面演示的代码 unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs; type TForm1 = class(TForm) procedure FormMouseUp(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Integer); end; var Form1: TForm1; implementation {$R *.dfm} var pt: TPoint; {这个坐标点将会已指针的方式传递给线程, 它应该是全局的} function MyThreadFun(p: Pointer): Integer; stdcall; var i: Integer; pt2: TPoint; {因为指针参数给的点随时都在变, 需用线程的局部变量存起来} begin pt2 := PPoint(p)^; {转换} for i := 0 to 1000000 do begin with Form1.Canvas do begin Lock; TextOut(pt2.X, pt2.Y, IntToStr(i)); Unlock; end; end; Result := 0; end; procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Integer); var ID: DWORD; begin pt := Point(X, Y); CreateThread(nil, 0, @MyThreadFun, @pt, 0, ID); {下面这种写法更好理解, 其实不必, 因为 PPoint 会自动转换为 Pointer 的} //CreateThread(nil, 0, @MyThreadFun, Pointer(@pt), 0, ID); end; end.
这个例子还有不严谨的地方: 当一个线程 Lock 窗体的 Canvas 时, 其他线程在等待; 线程在等待时, 其中的计数也还在增加. 这也就是说: 现在并没有去处理线程的同步; 同步是多线程中最重要的课题, 快到了.
另外有个小技巧: 线程函数的参数是个 32 位(4个字节)的指针, 仅就本例来讲, 可以让它的 "高16位" 和 "低16位" 分别携带 X 和 Y; 这样就不需要哪个全局的 pt 变量了. 其实在 Windows 的消息中就是这样传递坐标的, 在 Windows 的消息中一般高字节是 Y、低字节是 X; 咱们这么来吧, 这样还可以使用给消息准备的一些方便的函数.
重写本例代码(当然运行效果和窗体文件都是一样的): unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs; type TForm1 = class(TForm) procedure FormMouseUp(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Integer); end; var Form1: TForm1; implementation {$R *.dfm} function MyThreadFun(p: Pointer): Integer; stdcall; var i: Integer; x,y: Word; begin x := LoWord(Integer(p)); y := HiWord(Integer(p)); {如果不使用 LoWord、HiWord 函数可以像下面这样: } //x := Integer(p); //y := Integer(p) shr 16; for i := 0 to 1000000 do begin with Form1.Canvas do begin Lock; TextOut(x, y, IntToStr(i)); Unlock; end; end; Result := 0; end; procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Integer); var ID: DWORD; num: Integer; begin num := MakeLong(X, Y); {如果不使用 MekeLong、MakeWParam、MakeLParam、MakeResult 等函数, 可以像下面这样: } //num := Y shl 16 + X; CreateThread(nil, 0, @MyThreadFun, Ptr(num), 0, ID); {上面的 Ptr 是专门将一个数字转换为指针的函数, 当然也可以这样: } //CreateThread(nil, 0, @MyThreadFun, Pointer(num), 0, ID); end; end. ㈣、入口函数的指针 function CreateThread( lpThreadAttributes: Pointer; dwStackSize: DWORD; lpStartAddress: TFNThreadStartRoutine; {入口函数的指针} lpParameter: Pointer; dwCreationFlags: DWORD; var lpThreadId: DWORD ): THandle; stdcall; 到了入口函数了, 学到这个地方, 我查了一个入口函数的标准定义, 这个函数的标准返回值应该是 DWORD, 不过这函数在 Delphi 的 System 单元定义的是: TThreadFunc = function(Parameter: Pointer): Integer; 我以后会尽量使用 DWORD 做入口函数的返回值.
这个返回值有什么用呢? 等线程退出后, 我们用 GetExitCodeThread 函数获取的退出码就是这个返回值!
如果线程没有退出, GetExitCodeThread 获取的退出码将是一个常量 STILL_ACTIVE (259); 这样我们就可以通过退出码来判断线程是否已退出.
还有一个问题: 前面也提到过, 线程函数不能是某个类的方法! 假如我们非要线程去执行类中的一个方法能否实现呢? 尽管可以用 Addr(类名.方法名) 或 MethodAddress('published 区的方法名') 获取类中方法的地址, 但都不能当做线程的入口函数, 原因可能是因为类中的方法的地址是在实例化为对象时动态分配的. 后来换了个思路, 其实很简单: 在线程函数中再调用方法不就得了, 估计 TThread 也应该是这样.
下面的例子就尝试了用线程调用 TForm1 类中的方法, 并测试了退出码的相关问题. unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls; type TForm1 = class(TForm) Button1: TButton; Button2: TButton; procedure Button1Click(Sender: TObject); procedure Button2Click(Sender: TObject); private procedure FormProc; {准备给线程使用的方法} end; var Form1: TForm1; implementation {$R *.dfm} var hThread: THandle; {线程入口函数} function MyThreadFun(p: Pointer): DWORD; stdcall; begin Form1.FormProc; {调用 TForm1 类的方法} Result := 99; {这个返回值将成为线程的退出代码, 99 是我随意给的数字} end; {TForm1 的方法, 本例中是给线程的入口函数调用的} procedure TForm1.FormProc; var i: Integer; begin for i := 0 to 200000 do begin with Form1.Canvas do begin Lock; TextOut(10, 10, IntToStr(i)); Unlock; end; end; end; {建立并执行线程} procedure TForm1.Button1Click(Sender: TObject); var ID: DWORD; begin hThread := CreateThread(nil, 0, @MyThreadFun, nil, 0, ID); end; {获取线程的退出代码, 并判断线程是否退出} procedure TForm1.Button2Click(Sender: TObject); var ExitCode: DWORD; begin GetExitCodeThread(hThread, ExitCode); if hThread = 0 then begin Text := '线程还未启动'; Exit; end; if ExitCode = STILL_ACTIVE then Text := Format('线程退出代码是: %d, 表示线程还未退出', [ExitCode]) else Text := Format('线程已退出, 退出代码是: %d', [ExitCode]); end; end. ㈤、堆栈大小 function CreateThread( lpThreadAttributes: Pointer; dwStackSize: DWORD; {堆栈大小} lpStartAddress: TFNThreadStartRoutine; lpParameter: Pointer; dwCreationFlags: DWORD; var lpThreadId: DWORD ): THandle; stdcall; CreateThread 的第二个参数是分配给线程的堆栈大小. 这首先这可以让我们知道: 每个线程都有自己独立的堆栈(也拥有自己的消息队列).
什么是堆栈? 其实堆是堆、栈是栈, 有时 "栈" 也被叫做 "堆栈". 它们都是进程中的内存区域, 主要是存取方式不同(栈:先进后出; 堆:先进先出); "栈"(或叫堆栈)适合存取临时而轻便的变量, 主要用来储存局部变量; 譬如 for i := 0 to 99 do 中的 i 就只能存于栈中, 你把一个全局的变量用于 for 循环计数是不可以的.
现在我们知道了线程有自己的 "栈", 并且在建立线程时可以分配栈的大小.
前面所有的例子中, 这个值都是 0, 这表示使用系统默认的大小, 默认和主线程栈的大小一样, 如果不够用会自动增长; 那主线程的栈有多大? 这个值是可以设定的: Project -> Options -> linker -> memory size(如图) 栈是私有的但堆是公用的, 如果不同的线程都来使用一个全局变量有点乱套; 为解决这个问题 Delphi 为我们提供了一个类似 var 的 ThreadVar 关键字, 线程在使用 ThreadVar 声明的全局变量时会在各自的栈中留一个副本, 这样就解决了冲突. 不过还是尽量使用局部变量, 或者在继承 TThread 时使用类的成员变量, 因为 ThreadVar 的效率不好, 据说比局部变量能慢 10 倍.
在下面的例子就测试了用 var 和 ThreadVar 定义变量的不同. 使用 var 效果图: 使用 ThreadVar 效果图: unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls; type TForm1 = class(TForm) Button1: TButton; procedure Button1Click(Sender: TObject); end; var Form1: TForm1; implementation {$R *.dfm} //var num: Integer; {全局变量} threadvar num: Integer; {支持多线程的全局变量} function MyThreadFun(p: Pointer): DWORD; stdcall; var py: Integer; begin py := Integer(p); while True do begin Inc(num); with Form1.Canvas do begin Lock; TextOut(20, py, IntToStr(num)); Unlock; end; Sleep(1000); {然线程挂起 1 秒钟再继续} end; end; procedure TForm1.Button1Click(Sender: TObject); var ID: DWORD; begin {借入口函数的参数传递了一个坐标点中的 Y 值, 以让各线程把结果输出在不同位置} CreateThread(nil, 0, @MyThreadFun, Ptr(20), 0, ID); CreateThread(nil, 0, @MyThreadFun, Ptr(40), 0, ID); CreateThread(nil, 0, @MyThreadFun, Ptr(60), 0, ID); end; end. ㈥、安全设置 function CreateThread( lpThreadAttributes: Pointer; {安全设置} dwStackSize: DWORD; lpStartAddress: TFNThreadStartRoutine; lpParameter: Pointer; dwCreationFlags: DWORD; var lpThreadId: DWORD ): THandle; stdcall; CreateThread 的第一个参数 lpThreadAttributes 是指向 TSecurityAttributes 结构的指针, 一般都是置为 nil, 这表示没有访问限制; 该结构的定义是: //TSecurityAttributes(又名: SECURITY_ATTRIBUTES、_SECURITY_ATTRIBUTES) _SECURITY_ATTRIBUTES = record nLength: DWORD; {结构大小} lpSecurityDescriptor: Pointer; {默认 nil; 这是另一个结构 TSecurityDescriptor 的指针} bInheritHandle: BOOL; {默认 False, 表示不可继承} end; //TSecurityDescriptor(又名: SECURITY_DESCRIPTOR、_SECURITY_DESCRIPTOR) _SECURITY_DESCRIPTOR = record Revision: Byte; Sbz1: Byte; Control: SECURITY_DESCRIPTOR_CONTROL; Owner: PSID; Group: PSID; Sacl: PACL; Dacl: PACL; end; 够复杂的, 但我们在多线程编程时不需要去设置它们, 大都是使用默认设置(也就是赋值为 nil).
我觉得有必要在此刻了解的是: 建立系统内核对象时一般都有这个属性(TSecurityAttributes); 在接下来多线程的课题中要使用一些内核对象, 不如先盘点一下, 到时碰到这个属性时给个 nil 即可, 不必再费神. {建立事件} function CreateEvent( lpEventAttributes: PSecurityAttributes; {!} bManualReset: BOOL; bInitialState: BOOL; lpName: PWideChar ): THandle; stdcall; {建立互斥} function CreateMutex( lpMutexAttributes: PSecurityAttributes; {!} bInitialOwner: BOOL; lpName: PWideChar ): THandle; stdcall; {建立信号} function CreateSemaphore( lpSemaphoreAttributes: PSecurityAttributes; {!} lInitialCount: Longint; lMaximumCount: Longint; lpName: PWideChar ): THandle; stdcall; {建立等待计时器} function CreateWaitableTimer( lpTimerAttributes: PSecurityAttributes; {!} bManualReset: BOOL; lpTimerName: PWideChar ): THandle; stdcall; 上面的四个系统内核对象(事件、互斥、信号、计时器)都是线程同步的手段, 从这也能看出处理线程同步的复杂性; 不过这还不是全部, Windows Vista 开始又增加了 Condition variables(条件变量)、Slim Reader-Writer Locks(读写锁)等同步手段.
不过最简单、最轻便(速度最快)的同步手段还是 CriticalSection(临界区), 但它不属于系统内核对象, 当然也就没有句柄、没有 TSecurityAttributes 这个安全属性, 这也导致它不能跨进程使用; 不过写多线程时一般不用跨进程, 所以 CriticalSection 应该是最常用的同步手段.
二、临界区。 先看一段程序, 代码文件: unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls; type TForm1 = class(TForm) ListBox1: TListBox; Button1: TButton; procedure FormCreate(Sender: TObject); procedure Button1Click(Sender: TObject); end; var Form1: TForm1; implementation {$R *.dfm} function MyThreadFun(p: Pointer): DWORD; stdcall; var i: Integer; begin for i := 0 to 99 do Form1.ListBox1.Items.Add(IntToStr(i)); Result := 0; end; procedure TForm1.Button1Click(Sender: TObject); var ID: DWORD; begin CreateThread(nil, 0, @MyThreadFun, nil, 0, ID); CreateThread(nil, 0, @MyThreadFun, nil, 0, ID); CreateThread(nil, 0, @MyThreadFun, nil, 0, ID); end; procedure TForm1.FormCreate(Sender: TObject); begin ListBox1.Align := alLeft; end; end. 在这段程序中, 有三个线程几乎是同时建立, 向窗体中的 ListBox1 中写数据, 最后写出的结果是这样的: 能不能让它们别打架, 一个完了另一个再来? 这就要用到多线程的同步技术. 前面说过, 最简单的同步手段就是 "临界区".
先说这个 "同步"(Synchronize), 首先这个名字起的不好, 我们好像需要的是 "异步"; 其实异步也不准确... 管它叫什么名字呢, 它的目的就是保证不冲突、有次序、都发生.
"临界区"(CriticalSection): 当把一段代码放入一个临界区, 线程执行到临界区时就独占了, 让其他也要执行此代码的线程先等等; 这和前面用的 Lock 和 UnLock 差不多; 使用格式如下: var CS: TRTLCriticalSection; {声明一个 TRTLCriticalSection 结构类型变量; 它应该是全局的} InitializeCriticalSection(CS); {初始化} EnterCriticalSection(CS); {开始: 轮到我了其他线程走开} LeaveCriticalSection(CS); {结束: 其他线程可以来了} DeleteCriticalSection(CS); {删除: 注意不能过早删除}
//也可用 TryEnterCriticalSection 替代 EnterCriticalSection. 用上临界区, 重写上面的代码, 运行效果图: //用临界区重写后的代码文件: unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls; type TForm1 = class(TForm) ListBox1: TListBox; Button1: TButton; procedure FormCreate(Sender: TObject); procedure FormDestroy(Sender: TObject); procedure Button1Click(Sender: TObject); end; var Form1: TForm1; implementation {$R *.dfm} var CS: TRTLCriticalSection; function MyThreadFun(p: Pointer): DWORD; stdcall; var i: Integer; begin EnterCriticalSection(CS); for i := 0 to 99 do Form1.ListBox1.Items.Add(IntToStr(i)); LeaveCriticalSection(CS); Result := 0; end; procedure TForm1.Button1Click(Sender: TObject); var ID: DWORD; begin CreateThread(nil, 0, @MyThreadFun, nil, 0, ID); CreateThread(nil, 0, @MyThreadFun, nil, 0, ID); CreateThread(nil, 0, @MyThreadFun, nil, 0, ID); end; procedure TForm1.FormCreate(Sender: TObject); begin ListBox1.Align := alLeft; InitializeCriticalSection(CS); end; procedure TForm1.FormDestroy(Sender: TObject); begin DeleteCriticalSection(CS); end; end. Delphi 在 SyncObjs 单元给封装了一个 TCriticalSection 类, 用法差不多, 代码如下: unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls; type TForm1 = class(TForm) ListBox1: TListBox; Button1: TButton; procedure FormCreate(Sender: TObject); procedure FormDestroy(Sender: TObject); procedure Button1Click(Sender: TObject); end; var Form1: TForm1; implementation {$R *.dfm} uses SyncObjs; var CS: TCriticalSection; function MyThreadFun(p: Pointer): DWORD; stdcall; var i: Integer; begin CS.Enter; for i := 0 to 99 do Form1.ListBox1.Items.Add(IntToStr(i)); CS.Leave; Result := 0; end; procedure TForm1.Button1Click(Sender: TObject); var ID: DWORD; begin CreateThread(nil, 0, @MyThreadFun, nil, 0, ID); CreateThread(nil, 0, @MyThreadFun, nil, 0, ID); CreateThread(nil, 0, @MyThreadFun, nil, 0, ID); end; procedure TForm1.FormCreate(Sender: TObject); begin ListBox1.Align := alLeft; CS := TCriticalSection.Create; end; procedure TForm1.FormDestroy(Sender: TObject); begin CS.Free; end; end. 三、等待函数 WaitForSingleObject 一下子跳到等待函数 WaitForSingleObject, 是因为下面的 Mutex、Semaphore、Event、WaitableTimer 等同步手段都要使用这个函数; 不过等待函数可不止 WaitForSingleObject 它一个, 但它最简单. function WaitForSingleObject( hHandle: THandle; {要等待的对象句柄} dwMilliseconds: DWORD {等待的时间, 单位是毫秒} ): DWORD; stdcall; {返回值如下:} WAIT_OBJECT_0 {等着了, 本例中是: 等的那个进程终于结束了} WAIT_TIMEOUT {等过了点(你指定的时间), 也没等着} WAIT_ABANDONED {好不容易等着了, 但人家还是不让咱执行; 这一般是互斥对象} //WaitForSingleObject 的第二个参数一般给常数值 INFINITE, 表示一直等下去, 死等.
WaitForSingleObject 等待什么? 在多线程里就是等待另一个线程的结束, 快来执行自己的代码; 不过它可以等待的对象可不止线程; 这里先来一个等待另一个进程结束的例子, 运行效果图: //WaitForSingleObject的示例代码文件: unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls; type TForm1 = class(TForm) Button1: TButton; procedure Button1Click(Sender: TObject); end; var Form1: TForm1; implementation {$R *.dfm} var hProcess: THandle; {进程句柄} {等待一个指定句柄的进程什么时候结束} function MyThreadFun(p: Pointer): DWORD; stdcall; begin if WaitForSingleObject(hProcess, INFINITE) = WAIT_OBJECT_0 then Form1.Text := Format('进程 %d 已关闭', [hProcess]); Result := 0; end; {启动一个进程, 并建立新线程等待它的结束} procedure TForm1.Button1Click(Sender: TObject); var pInfo: TProcessInformation; sInfo: TStartupInfo; Path: array[0..MAX_PATH-1] of Char; ThreadID: DWORD; begin {先获取记事本的路径} GetSystemDirectory(Path, MAX_PATH); StrCat(Path, '\notepad.exe'); {用 CreateProcess 打开记事本并获取其进程句柄, 然后建立线程监视} FillChar(sInfo, SizeOf(sInfo), 0); if CreateProcess(Path, nil, nil, nil, False, 0, nil, nil, sInfo, pInfo) then begin hProcess := pInfo.hProcess; {获取进程句柄} Text := Format('进程 %d 已启动', [hProcess]); CreateThread(nil, 0, @MyThreadFun, nil, 0, ThreadID); {建立线程监视} end; end; end.
|
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论