在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
经济全球化和金融市场的完整性促进了对资产定价,风险管理,投资组合选择等各个领域的多元波动建模的需求。因此,两种类型的模型 - 多变量广义自回归条件异方差(MGARCH)和多变量随机波动率(MSV)模型 - 已成为理论和实证研究的主要方法。已经开发了不同版本的MGARCH和MSV模型,包括单变量模型的一般化,因子模型,非对称模型,时变相关模型和一些替代方案,以捕获和学习波动的相应特征。 在本文中,我们将通过WinBUGS(使用Gibbs采样为WINDOWS OS进行贝叶斯推断)对MGARCH和MSV模型进行估计和比较,1WinBUGS软件包(最新版本为1.4.3)以及WinBUGS用户手册可以从http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml免费下载。首先,WinBUGS包含一个专家系统,可以从完全条件后验分布中选择最佳算法进行采样。构建特殊的MCMC算法通常是相当复杂的事情,特别是对于没有封闭形式后验分布的MGARCH模型。因此,WinBUGS为研究人员提供了捷径。其次,WinBUGS包含偏差信息标准(DIC)模块,可以根据模型拟合优度和复杂度评估和比较相同数据的不同模型。现在DIC被认为是一个强有力的贝叶斯模型比较标准,而不是AIC和BIC。第三,WinBUGS是免费且用户友好的; 用户只能通过将模型的逻辑结构转换为BUGS语言(它与S +编程语言非常相似)或通过有向非循环图来表示模型,以及模型的修改(如先前的更改)来实现贝叶斯推理。
数据和数据参数的先验分布的平均值和标准偏差。
图1. 2004年6月28日至2008年6月30日五个部门每周收盘价的对数。
2004年6月28日至2008年6月30日五个部门每周回报的时间序列图。
MGARCH和MSV模型中其他参数的后验统计。
WinBUGS输出:CCt规范中持久性φ的箱形图。(a)CCt-MGARCH模型中的φ和(b)CCt-MSV模型中的φ。
WinBUGS软件输出:持久性φ之间的相关性我和波动的变化 在MSV模型中。具有斜率-1的黑线表示负相关:(a)基本-MSV模型和(b)CC-MSV模型。
WinBUGS软件输出:吉尔曼鲁宾统计量- [R 21(A):在CCT-多元GARCH和CCT-MSV模型- [R 21在CCT-多元GARCH模型和(b)- [R 21在CCT-MSV模型。
六种模型的DIC值条形图。
在CCt-MSV模型中平滑的波动率估计值h t。 图A1。三角形构造, 和 ,哪里 。和,是中线。h K和h M是底座上的高度 和 , 分别。θ是两者之间的角度和 。
最后,对中国上海证券交易所(SSE)行业指数周回报的实证研究说明了MGARCH和MSV模型的贝叶斯估计和比较。传统的股票波动性实证研究更多地关注某些特定股票或市场,例如IBM股票,惠普股票或道琼斯指数,标准普尔500指数。
|
请发表评论