• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

NVIDIA/thrust: The C++ parallel algorithms library.

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

NVIDIA/thrust

开源软件地址(OpenSource Url):

https://github.com/NVIDIA/thrust

开源编程语言(OpenSource Language):

C++ 68.6%

开源软件介绍(OpenSource Introduction):

Thrust: The C++ Parallel Algorithms Library

Examples Godbolt Documentation

Thrust is the C++ parallel algorithms library which inspired the introduction of parallel algorithms to the C++ Standard Library. Thrust's high-level interface greatly enhances programmer productivity while enabling performance portability between GPUs and multicore CPUs. It builds on top of established parallel programming frameworks (such as CUDA, TBB, and OpenMP). It also provides a number of general-purpose facilities similar to those found in the C++ Standard Library.

The NVIDIA C++ Standard Library is an open source project; it is available on GitHub and included in the NVIDIA HPC SDK and CUDA Toolkit. If you have one of those SDKs installed, no additional installation or compiler flags are needed to use libcu++.

Examples

Thrust is best learned through examples.

The following example generates random numbers serially and then transfers them to a parallel device where they are sorted.

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/sort.h>
#include <thrust/copy.h>
#include <thrust/random.h>

int main() {
  // Generate 32M random numbers serially.
  thrust::default_random_engine rng(1337);
  thrust::uniform_int_distribution<int> dist;
  thrust::host_vector<int> h_vec(32 << 20);
  thrust::generate(h_vec.begin(), h_vec.end(), [&] { return dist(rng); });

  // Transfer data to the device.
  thrust::device_vector<int> d_vec = h_vec;

  // Sort data on the device.
  thrust::sort(d_vec.begin(), d_vec.end());

  // Transfer data back to host.
  thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());
}

See it on Godbolt

This example demonstrates computing the sum of some random numbers in parallel:

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/reduce.h>
#include <thrust/functional.h>
#include <thrust/random.h>

int main() {
  // Generate random data serially.
  thrust::default_random_engine rng(1337);
  thrust::uniform_real_distribution<double> dist(-50.0, 50.0);
  thrust::host_vector<double> h_vec(32 << 20);
  thrust::generate(h_vec.begin(), h_vec.end(), [&] { return dist(rng); });

  // Transfer to device and compute the sum.
  thrust::device_vector<double> d_vec = h_vec;
  double x = thrust::reduce(d_vec.begin(), d_vec.end(), 0, thrust::plus<int>());
}

See it on Godbolt

This example show how to perform such a reduction asynchronously:

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/async/copy.h>
#include <thrust/async/reduce.h>
#include <thrust/functional.h>
#include <thrust/random.h>
#include <numeric>

int main() {
  // Generate 32M random numbers serially.
  thrust::default_random_engine rng(123456);
  thrust::uniform_real_distribution<double> dist(-50.0, 50.0);
  thrust::host_vector<double> h_vec(32 << 20);
  thrust::generate(h_vec.begin(), h_vec.end(), [&] { return dist(rng); });

  // Asynchronously transfer to the device.
  thrust::device_vector<double> d_vec(h_vec.size());
  thrust::device_event e = thrust::async::copy(h_vec.begin(), h_vec.end(),
                                               d_vec.begin());

  // After the transfer completes, asynchronously compute the sum on the device.
  thrust::device_future<double> f0 = thrust::async::reduce(thrust::device.after(e),
                                                           d_vec.begin(), d_vec.end(),
                                                           0.0, thrust::plus<double>());

  // While the sum is being computed on the device, compute the sum serially on
  // the host.
  double f1 = std::accumulate(h_vec.begin(), h_vec.end(), 0.0, thrust::plus<double>());
}

See it on Godbolt

Getting The Thrust Source Code

Thrust is a header-only library; there is no need to build or install the project unless you want to run the Thrust unit tests.

The CUDA Toolkit provides a recent release of the Thrust source code in include/thrust. This will be suitable for most users.

Users that wish to contribute to Thrust or try out newer features should recursively clone the Thrust Github repository:

git clone --recursive https://github.com/NVIDIA/thrust.git

Using Thrust From Your Project

For CMake-based projects, we provide a CMake package for use with find_package. See the CMake README for more information. Thrust can also be added via add_subdirectory or tools like the CMake Package Manager.

For non-CMake projects, compile with:

  • The Thrust include path (-I<thrust repo root>)
  • The libcu++ include path (-I<thrust repo root>/dependencies/libcudacxx/)
  • The CUB include path, if using the CUDA device system (-I<thrust repo root>/dependencies/cub/)
  • By default, the CPP host system and CUDA device system are used. These can be changed using compiler definitions:
    • -DTHRUST_HOST_SYSTEM=THRUST_HOST_SYSTEM_XXX, where XXX is CPP (serial, default), OMP (OpenMP), or TBB (Intel TBB)
    • -DTHRUST_DEVICE_SYSTEM=THRUST_DEVICE_SYSTEM_XXX, where XXX is CPP, OMP, TBB, or CUDA (default).

Developing Thrust

Thrust uses the CMake build system to build unit tests, examples, and header tests. To build Thrust as a developer, it is recommended that you use our containerized development system:

# Clone Thrust and CUB repos recursively:
git clone --recursive https://github.com/NVIDIA/thrust.git
cd thrust

# Build and run tests and examples:
ci/local/build.bash

That does the equivalent of the following, but in a clean containerized environment which has all dependencies installed:

# Clone Thrust and CUB repos recursively:
git clone --recursive https://github.com/NVIDIA/thrust.git
cd thrust

# Create build directory:
mkdir build
cd build

# Configure -- use one of the following:
cmake ..   # Command line interface.
ccmake ..  # ncurses GUI (Linux only).
cmake-gui  # Graphical UI, set source/build directories in the app.

# Build:
cmake --build . -j ${NUM_JOBS} # Invokes make (or ninja, etc).

# Run tests and examples:
ctest

By default, a serial CPP host system, CUDA accelerated device system, and C++14 standard are used. This can be changed in CMake and via flags to ci/local/build.bash

More information on configuring your Thrust build and creating a pull request can be found in the contributing section.

Licensing

Thrust is an open source project developed on GitHub. Thrust is distributed under the Apache License v2.0 with LLVM Exceptions; some parts are distributed under the Apache License v2.0 and the Boost License v1.0.

CI Status




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap