• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

xuannianz/keras-GaussianYOLOv3: Gaussian YOLOv3 (An Accurate and Fast Object Det ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

xuannianz/keras-GaussianYOLOv3

开源软件地址(OpenSource Url):

https://github.com/xuannianz/keras-GaussianYOLOv3

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

Gaussian YOLOv3

This is an implementation of Gaussian YOLOv3 on Keras and Tensorflow. The project is based on qqwweee/keras-yolo3 and fizyr/keras-retinanet. Thanks for their hard work. The official implementation is jwchoi384/Gaussian_YOLOv3

As in the official implementation, there is a hyper parameter sigma_const. I get best result on Pascal VOC when set it to be 0.3. The best result (mAP50 0.8535) is a little better than the one (mAP50 0.8500) I got by original YOLOv3. I am not sure whether the improvement is due to random training or benefits from Gaussian logic.

Test

  1. I trained on Pascal VOC2012 trainval.txt + Pascal VOC2007 train.txt, and validated on Pascal VOC2007 val.txt. There are 14041 images for training and 2510 images for validation.
  2. The best evaluation result (score_threshold=0.01, mAP50, image_size=416, sigma_const=0.3) on VOC2007 test is 0.8535.
  3. Pretrained official yolo weights on COCO and gaussian yolo weights on Pascal VOC are here.
    baidu netdisk extract code: qgnd google driver
  4. python3 yolo/inference.py to test your image by specifying image path and model path there.

image1 image2 image3

Train

build dataset (Pascal VOC, other types please refer to fizyr/keras-retinanet)

  • Download VOC2007 and VOC2012, copy all image files from VOC2007 to VOC2012.
  • Append VOC2007 train.txt to VOC2012 trainval.txt.
  • Overwrite VOC2012 val.txt by VOC2007 val.txt.

train

  • STEP1: python3 train.py --freeze-body yolo --gpu 0 --batch-size 32 --random-transform --compute-val-loss pascal datasets/VOC2012 to start training with lr=1e-3 then stop when val mAP keep dropping.
  • STEP2: python3 train.py --snapshot <xxx> --freeze-body darknet --gpu 0 --batch-size 32 --random-transform --compute-val-loss pascal datasets/VOC2012 to start training with lr=1e-4 then top when val mAP keep dropping.
  • STEP3: python3 train.py --snapshot <xxx> --freeze-body none --gpu 0 --batch-size 32 --random-transform --compute-val-loss pascal datasets/VOC2012 to start training with lr=1e-5 and then set lr=1e-6 when val mAP when keep dropping.

Evaluate

  • python3 eval/common.py to evaluate by specifying model path there.



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap