• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

drsagitn/anomaly-detection-and-localization

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

drsagitn/anomaly-detection-and-localization

开源软件地址(OpenSource Url):

https://github.com/drsagitn/anomaly-detection-and-localization

开源编程语言(OpenSource Language):

Python 98.4%

开源软件介绍(OpenSource Introduction):

Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder

This repository hosts the codes for "Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder". Paper can be found at Springer and arXiv.

Prerequisites:

  • keras
  • tensorflow
  • h5py
  • scikit-image
  • scikit-learn
  • sk-video
  • tqdm (for progressbar)
  • coloredlogs (optional, for colored terminal logs only)

You can use the Dockerfile provided to build the environment then enter the environment using nvidia-docker run --rm -it -v HOST_FOLDER:/share DOCKER_IMAGE bash.

To train the model, just run python start_train.py. Default configuration can be found at config.yml. You need to prepare video dataset you plan to train/evaluate on. You may get the benchmark dataset videos from respective authors. For each dataset, put the training videos into VIDEO_ROOT_PATH/DATASET_NAME/training_videos and testing videos into VIDEO_ROOT_PATH/DATASET_NAME/testing_videos. Example structure of training videos for avenue dataset:

  • VIDEO_ROOT_PATH/avenue/training_videos
    • 01.avi
    • 02.avi
    • ...
    • 16.avi

Once you have trained the model, you may now run python start_test.py after setting the parameters at the beginning of the file.

Please cite the following paper if you use our code / paper:

@inbook{Chong2017,
  author    = {Chong, Yong Shean and
               Tay, Yong Haur},
  editor    = {Cong, Fengyu and
               Leung, Andrew and
               Wei, Qinglai},
  title     = {Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder},
  bookTitle = {Advances in Neural Networks - ISNN 2017: 14th International Symposium, ISNN 2017, Sapporo, Hakodate, and Muroran, Hokkaido, Japan, June 21--26, 2017, Proceedings, Part II},
  year      = {2017},
  publisher = {Springer International Publishing},
  pages     = {189--196},
  isbn      = {978-3-319-59081-3},
  doi       = {10.1007/978-3-319-59081-3_23},
  url       = {https://doi.org/10.1007/978-3-319-59081-3_23}
}



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap