• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

runzhouge/MAC: MAC: Mining Activity Concepts for Language-based Temporal Localiz ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

runzhouge/MAC

开源软件地址(OpenSource Url):

https://github.com/runzhouge/MAC

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

MAC

By Runzhou Ge, Jiyang Gao, Kan Chen, Ram Nevatia.

University of Southern California (USC).

Introduction

This repository contains the code for the WACV 2019 paper, MAC: Mining Activity Concepts for Language-based Temporal Localization. arXiv

Requirements

  • Python 2.7
  • Tensorflow 1.0 or higher
  • others

Download

The code is for Charades-STA dataset.

After cloning this repo, please donwload:

ref_info contains Charades-STA annotations, semantic activity concepts, checkpoints and others. After downloading ref_info.tar, untar it and move the folder to the root/ directory of this repo.

Please also change the visual feature and visual activity concepts directories in the main.py.

Training

For the paper results on Charades-STA dataset, run

python main.py --is_only_test True \
--checkpoint_path ./ref_info/charades_sta_wacv_2019_paper_ACL_k_results/trained_model.ckpt-10000 \
--test_name paper_results

You will get similar results listed in the row "ACL-K" of the following table.

Model R@1,IoU=0.7 R@1,IoU=0.5 R@5,IoU=0.7 R@5,IoU=0.5
CTRL 7.15 21.42 26.91 59.11
ACL-K 12.20 30.48 35.13 64.84

To train the model from scratch, run

python main.py

The results and checkpoints will appear in root/results_history/ and root/trained_save/, respectively.

Results Visualization

Citation

If you find this work is helpful, please cite:

@InProceedings{Ge_2019_WACV,
  author = {Ge, Runzhou and Gao, Jiyang and Chen, Kan and Nevatia, Ram},
  title = {MAC: Mining Activity Concepts for Language-based Temporal Localization},
  booktitle = {The IEEE Winter Conference on Applications of Computer Vision (WACV)},
  month = {January},
  year = {2019}
}

License

MIT License

Acknowledgements

This research was supported, in part, by the Office of Naval Research under grant N00014-18-1-2050 and by an Amazon Research Award.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
valterlorran/vuejs-localization发布时间:2022-08-16
下一篇:
cancam/LRP: Localization Recall Precision Performance Metric toolkit for PASCAL- ...发布时间:2022-08-16
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap