• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

tnybny/Frame-level-anomalies-in-videos: Frame level anomaly detection and locali ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

tnybny/Frame-level-anomalies-in-videos

开源软件地址(OpenSource Url):

https://github.com/tnybny/Frame-level-anomalies-in-videos

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

Frame-level anomaly detection in videos

Perform anomaly detection in videos using neural network architectures such as 2D convolutional auto-encoder[2] and spatial-temporal auto-encoder[3]. The focus is on finding frame-level anomalies in the UCSD Ped1 dataset[1, 5].

Prerequisites

  1. Python 2.7
    • PIL
    • glob
    • cv2
    • numpy
    • matplotlib
    • sklearn
  2. CUDA Toolkit 8+
  3. TensorFlow 1.12 (?) <= tf.VERSION <= 1.3

List of files and their functions

  1. config/
    • config.ini: contains settings for the run such as which network to use, learning rate, batch size and etcetera.
  2. data.nosync/
    • (empty): space for train.tfrecords, test.tfrecords, frame-level annotation files created using src/create_tfrecords.py and src/create__frame_annotation.py.
  3. models.nosync/
    • (empty): space for saved model using TensorFlow's saver methods.
  4. results/
    • (empty): space for log files, plots and data structures that could be useful for post processing.
  5. src/
    • evaluation/* : space for routines used to evaluate quality of anomaly detection (frame and pixel-level AUCs).
    • create_ped1_frame_annotation.py: creates frame annotation to guide frame-level AUC calculation which is used to guide training.
    • create_ped2_frame_annotation.py: creates frame annotation to guide frame-level AUC calculation which is used to guide training.
    • create_streetscene_frame_annotation.py: creates frame annotation to guide frame-level AUC calculation which is used to guide training.
    • conv_AE_2D.py: implements a 2D convolutional auto-encoder.
    • conv_lstm_cell.py: implements a convLSTM cell to be used in an RNN. Credit: [4].
    • create_tfrecords.py: creates train.npy and test.npy from a video anomaly detection dataset's raw data by some preprocessing.
    • data_iterator.py: tf.data pipeline feeds batches of preprocessed video clips for training and testing.
    • plots.py: implements plotting functions for results from a run.
    • spatial_temporal_autoencoder.py: implements a spatial-temporal auto-encoder which is an RNN that uses convLSTM cells in between conv and deconv of a convAE.
    • train.py: implements functions to run the network in training and testing modes by interacting with the data iterator and a model.
    • max_unpool.py: implements the max_unpool operation in the convolutional auto-encoder. Credit: [6].
  6. main.py: read the config file, start logging, initialize data iterator and model builder and perform training.
  • Note: src/evaluation/compute_frame_roc_auc and src/evaluation/compute_pixel_roc_auc cannot be made available due to copyright. They are not essential to this repo; details on how to implement them can be found in [1, 5].

Instructions for usage

  1. Run src/create_<dataset_name>_frame_annotation.py.
  2. Set DATA_DIR and EXT in config/config.ini and run src/create_tfrecords.py.
  3. Set all variables in config/config.ini and run main.py.

Authors

  1. Bharathkumar "Tiny" Ramachandra: tnybny at gmail dot com
  2. Zexi "Jay" Chen

References

  1. Mahadevan, Vijay, et al. "Anomaly detection in crowded scenes." Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010.
  2. Hasan, Mahmudul, et al. "Learning temporal regularity in video sequences." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
  3. Chong, Yong Shean, and Yong Haur Tay. "Abnormal event detection in videos using spatiotemporal autoencoder." International Symposium on Neural Networks. Springer, Cham, 2017.
  4. https://github.com/carlthome/tensorflow-convlstm-cell/blob/master/cell.py
  5. Li, Weixin, Vijay Mahadevan, and Nuno Vasconcelos. "Anomaly detection and localization in crowded scenes." IEEE transactions on pattern analysis and machine intelligence 36.1 (2014): 18-32.
  6. https://github.com/Pepslee



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap