• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

acschaefer/polex: Long-Term Urban Vehicle Localization Using Pole Landmarks Extr ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

acschaefer/polex

开源软件地址(OpenSource Url):

https://github.com/acschaefer/polex

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

Long-Term Urban Vehicle Localization Using Pole Landmarks Extracted from 3-D Lidar Scans

This repository contains the Python code that accompanies our paper "Long-Term Urban Vehicle Localization Using Pole Landmarks Extracted from 3-D Lidar Scans" submitted to the European Conference on Mobile Robots. The implementation allows to

  • extract the parameters of pole-like objects from 3-D lidar scans,
  • create a global reference map of pole landmarks,
  • localize a vehicle online based on the reference map and live lidar measurements,
  • replicate the experiments on the NCLT dataset and on the KITTI dataset described in the paper.

It provides the following three software modules.

Pole extractor

This module takes odometry and 3-D lidar scans accumulated over a short trajectory segment as input, searches for pole-like objects in the data, and outputs the parameters of the corresponding pole estimates.

Poles extracted from NCLT 3-D lidar data
Pole extraction from NCLT lidar data.

Poles extracted from KITTI 3-D lidar data
Pole extraction from KITTI lidar data.

Mapping module

Given a set of possibly overlapping local landmark maps generated by the pole extractor, this module resolves all ambiguities and creates a global reference map of pole landmarks.

Map of pole landmarks generated from NCLT dataset
NCLT landmark map.

Map of pole landmarks generated from KITTI dataset
KITTI landmark map with vehicle trajectory.

Localization module

On the basis of the global map, live odometry measurements, and pole landmark estimates, this module computes an estimate of the current vehicle pose using a particle filter.

Particle filter localization on NCLT dataset
Particle filter localization on NCLT. The red dots denote the particles, the blue dots denote the reference landmarks, ad the black crosses visualize the online landmarks.

Running the code

First of all, please make sure you are running Python 2.7.

While the pole extractor is represented by its own Python module poles.py, the mapping and localization module are implemented separately for NCLT (ncltpoles.py) and KITTI (kittipoles.py) due to the different representations of the datasets. For closer information about the workings of the implementation, please read the paper and follow the source code documentation.

In order to run the scripts with the experiments on NCLT (ncltpoles.py) and KITTI (kittipoles.py), please install the package manager pip via

sudo apt install python-pip python-tk

and use it to install the following Python packages:

pip install numpy matplotlib open3d-python progressbar pyquaternion transforms3d scipy scikit-image networkx psutil

Then, please check out the ray tracing repository and build it.

With these prerequisites, you are ready to run the experiments and the different modules.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap