在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
开源软件名称(OpenSource Name):IsaacChanghau/VSLNet开源软件地址(OpenSource Url):https://github.com/IsaacChanghau/VSLNet开源编程语言(OpenSource Language):Python 100.0%开源软件介绍(OpenSource Introduction):Span-based Localizing Network for Natural Language Video LocalizationThis is implementation for the paper "Span-based Localizing Network for Natural Language Video Localization" (ACL 2020, long paper): ACL version, ArXiv version. Updates
# preparing environment for TensorFlow 2.5.0
conda create --name vslnet_tf2 python=3.9
conda activate vslnet_tf2
conda install -c conda-forge cudnn # will install cuda 11.2 automatically
pip install tensorflow-gpu==2.5.0
pip install nltk
pip install torch torchvision torchaudio
python3.9 -m nltk.downloader punkt Prerequisites
If you have Anaconda installed, the conda environment of VSLNet can be built as follow (take python 3.7 as an example): # preparing environment
conda create --name vslnet python=3.7
conda activate vslnet
conda install -c anaconda cudatoolkit=10.0 cudnn
conda install tensorflow-gpu==1.13.1
conda install -c anaconda nltk pillow=6.2.1
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorch
conda install -c conda-forge transformers opencv moviepy tqdm youtube-dl
# download punkt for word tokenizer
python3.7 -m nltk.downloader punkt PreparationThe details about how to prepare the Quick StartTensorFlow versionTrain and Test # processed dataset will be automatically generated or loaded if exist
# set `--mode test` for evaluation
# set `--predictor transformer` to change the answer predictor from stacked lstms to stacked transformers
# train VSLNet on Charades-STA dataset
python main.py --task charades --predictor rnn --mode train
# train VSLNet on ActivityNet Captions dataset
python main.py --task activitynet --predictor rnn --mode train
# train VSLNet on TACoS dataset
python main.py --task tacos --predictor rnn --mode train Please refer each python file for more parameter settings. You can also download the checkpoints for each task
from here and the corresponding processed dataset from
here, and save them to the Pytorch VersionTrain and Test # the same as the usage of tf version
# train VSLNet on Charades-STA dataset
python main.py --task charades --predictor rnn --mode train
# train VSLNet on ActivityNet Captions dataset
python main.py --task activitynet --predictor rnn --mode train
# train VSLNet on TACoS dataset
python main.py --task tacos --predictor rnn --mode train
CitationIf you feel this project helpful to your research, please cite our work.
and
|
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论