• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

jbhuang0604/WSL: Weakly Supervised Object Localization with Progressive Domain A ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

jbhuang0604/WSL

开源软件地址(OpenSource Url):

https://github.com/jbhuang0604/WSL

开源编程语言(OpenSource Language):

C++ 47.5%

开源软件介绍(OpenSource Introduction):

Weakly Supervised Object Localization with Progressive Domain Adaptation (CVPR 2016)

This is the research code for the paper:

Dong Li, Jia-Bin Huang, Yali Li, Shengjin Wang, and Ming-Hsuan Yang. "Weakly Supervised Object Localization with Progressive Domain Adaptation" In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

Project page

Citation

If you find the code and pre-trained models useful in your research, please consider citing:

@inproceedings{Huang-CVPR-2016,
  author  = {Dong, Li and Huang, Jia-Bin and Li, Yali and Wang, Shengjin and Yang, Ming-Hsuan},
  title   = {Weakly Supervised Object Localization with Progressive Domain Adaptation},
  booktitle = {Proceedings of the IEEE  Conference on Computer Vision and Pattern Recognition)},
  year    = {2015},
  volume  = {},
  number  = {},
  pages   = {}  
  }

System Requirements

  • MATLAB (tested with R2014a on 64-bit Linux)
  • Caffe

Installation

  1. Download and unzip the project code.

  2. Install caffe. We call the root directory of the project code WSL_ROOT.

    cd $WSL_ROOT/caffe-wsl
    # Now follow the Caffe installation instructions here:
    # http://caffe.berkeleyvision.org/installation.html
    # If you're experienced with Caffe and have all of the requirements installed
    # and your Makefile.config is in place, then simply do:
    make all -j8
    make pycaffe
    make matcaffe
    
  3. Download the PASCAL VOC 2007 dataset. Extract all the tars into one directory named VOCdevkit. It should have this basic structure:

    $VOCdevkit/                           # development kit
    $VOCdevkit/VOCcode/                   # VOC utility code
    $VOCdevkit/VOC2007                    # image sets, annotations, etc.
    # ... and several other directories ...
    # Then create symlinks for the dataset:
    cd $WSL_ROOT/data
    ln -s $VOCdevkit VOCdevkit2007
    
  4. Download the pre-trained ImageNet model and put it into $WSL_ROOT/data/imagenet_models.

  5. Download the pre-computed EdgeBox proposals and put them into $WSL_ROOT/data/edgebox_data.

  1. Install the project.

    cd $WSL_ROOT
    # Start MATLAB
    matlab
    >> startup
    

Usage

You will need about 150GB of disk space free for the feature cache (which is stored in $WSL_ROOT/cache by default. The final adapted model will be stored in $WSL_ROOT/output/default/voc_2007_trainval.

  1. Classification adaptation.

    >> prepare_for_cls_adapt
    cd $WSL_ROOT
    sh cls_adapt.sh
    
  2. Class-specific proposal mining.

    >> maskout
    
  3. MIL for confident proposal mining.

    >> mil
    
  4. Detection adaptation.

    >> prepare_for_det_adapt
    cd $WSL_ROOT
    sh det_adapt.sh
    
  5. Evaluation.

    cd $WSL_ROOT
    sh test.sh
    



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap