在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
开源软件名称(OpenSource Name):fanyang16120029/SSD-Single-Shot-Detector-in-Matlab开源软件地址(OpenSource Url):https://github.com/fanyang16120029/SSD-Single-Shot-Detector-in-Matlab开源编程语言(OpenSource Language):MATLAB 100.0%开源软件介绍(OpenSource Introduction):SSD-Single-Shot-Detector-in-MatlabSSD for object detection in matlab. SSD网络用于目标检测(Matlab版)。 1 Introduction(简介) This project provide a forward propagate demo of SSD(Singgle Shot Detector) network in matlab. SSD is a CNN(convolutional neraul network) architecture for object detection. We download the pretriand caffemodel VGG_VOC0712_SSD_300x300_iter_240000.caffemodel, and then convert it to .mat file for object detection. The codes of layers in SSD is written by author. No deep learning freamwork is needed. 该程序可用于SSD的Matlab目标检测。SSD是一种用于目标检测的CNN架构。我们将训练好的caffemodel(VGG_VOC0712_SSD_300x300_iter_240000.caffemodel)转成.mat文件用于目标检测。SSD中各层的函数有作者编写,不需要额外的深度学习开源框架。 2 How to Run This Demo(程序运行) (1) Open SSD_Emulation_Script.m. 打开SSD_Emulation_Script.m文件。 (2) unzip ssd_weights_mat.zip to ssd_weights_mat folder. 解压ssd_weights_mat.zip到ssd_weights_mat。 (3) Change the directory of image file on your computer (line 24: Img_Path = 'pedestrian2.jpg';). 更改图像路径。(第24行:Img_Path = 'pedestrian2.jpg';) 3 Basic layers in CNN (1) conv Input(输入): in_array -----> Input feature map.(dim = 3, height, width, channels) 输入特征图,维度为3(高、宽、深或原始图像的通道数)。 kernels -----> Convolution kernel.(dim = 4, height, width, channels, kernel number) 卷积核,维度为4(高、宽、深、卷积核个数)。 stride -----> Stride. 卷积核移动步长。 padding -----> Padding. 填充像素数。 dilation -----> Dialation. 卷积核膨胀距离。 output(输出): out_array -----> Output feature map.(dim = 3, height, width, channels) 输出特征图,维度为3(高、宽、深)。 (2) relu Input(输入): in_array -----> Input feature map.(dim = 3, height, width, channels) 输入特征图,维度为3(长、宽、深)。 Output(输出): out_array -----> Output feature map.(dim = 3, height, width, channels) 输出特征图,维度为3(长、宽、深)。 (3) pooling Input(输入): in_array -----> Input feature map.(dim = 3, height, width, channels) 输入特征图(dim = 3)。 window_size -----> Size of window. 池化窗口大小。 stride -----> Stride. 步长。 padding -----> Padding. 填充像素数。 Output(输出): out_array -----> Output feature map.(dim = 3, height, width, channels) 输出特征图(dim = 3)。 (4) prior box generation Input(输入): scale -----> Scale for detection used feature maps. 特征图对应尺度。 aspect_ratio -----> Aspect ratio for detection used feature maps.特征图Box对应长宽比。 feature_size -----> Size for detection used feature maps.特征图大小。 Output(输出): priorbox -----> Prior box. 输出Prior Box。 Detail information can be found in pdf. (only chinese version) |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论