• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

graytowne/caser: A Matlab implementation of Convolutional Sequence Embedding Rec ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

graytowne/caser

开源软件地址(OpenSource Url):

https://github.com/graytowne/caser

开源编程语言(OpenSource Language):

MATLAB 100.0%

开源软件介绍(OpenSource Introduction):

Caser

A Matlab implementation of Convolutional Sequence Embedding Recommendation Model (Caser) from paper:

Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding, Jiaxi Tang and Ke Wang , WSDM '18

Note: I strongly suggest to use the PyTorch version here, as it has better readability and reproducibility.

Requirements

Usage

  1. Installing MatConvNet (guide).
  2. Change the code to make the path point to your MatConvNet path.
  3. Open Matlab and run main_caser.m

Configurations

Data

  • Datasets are organized in 2 seperate files: train.txt and test.txt

  • Same to other data format for recommendation, each file contains a collection of triplets:

    user, item, rating

    The only difference is the triplets are organized in time order.

  • As the problem is Sequential Reommendation, the rating doesn't matter, so I convert them to all 1.

Model Args (in main_caser.m)

  • L: length of sequence
  • T: number of targets
  • rate_once: whether each item will only be rated once by each user
  • early_stop: whether to perform early stop during training
  • d: number of latent dimensions
  • nv: number of vertical filters
  • nh: number of horizontal filters
  • ac_conv: activation function for convolution layer (i.e., phi_c in paper)
  • ac_fc: activation function for fully-connected layer (i.e., phi_a in paper)
  • drop_rate: drop ratio when performing dropout

Citation

If you use this Caser in your paper, please cite the paper:

@inproceedings{tang2018caser,
  title={Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding},
  author={Tang, Jiaxi and Wang, Ke},
  booktitle={ACM International Conference on Web Search and Data Mining},
  year={2018}
}

Comments

For easy implementation and flexibility, I didn't implement below things:

  • Didn't make mini-batch in parallel.
  • Didn't make the model in MatConvNet wrapper.

License

  • GNU Lesser General Public License v3.0



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap