• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Sohl-Dickstein/Minimum-Probability-Flow-Learning: Matlab code implementing Minim ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

Sohl-Dickstein/Minimum-Probability-Flow-Learning

开源软件地址(OpenSource Url):

https://github.com/Sohl-Dickstein/Minimum-Probability-Flow-Learning

开源编程语言(OpenSource Language):

MATLAB 71.3%

开源软件介绍(OpenSource Introduction):

Minimum Probability Flow learning (MPF)

MPF is a technique for parameter estimation in un-normalized probabilistic models. It is described in the paper:

J Sohl-Dickstein, P Battaglino, MR DeWeese
Minimum probability flow learning
International Conference on Machine Learning (2011)
http://arxiv.org/abs/0906.4779

This repository contains Matlab code implementing MPF for the Ising model and the RBM. The directory structure is as follows:

  • MPF_ising/ - parameter estimation in the Ising model
  • MPF_RBM_compare_log_likelihood/ - parameter estimation in Restricted Boltzmann Machines. This directory also includes code comparing the log likelihood of small RBMs trained via pseudolikelihood and Contrastive Divergence to ones trained via MPF.

If you're interesting in using MPF to build an Ising model of neural spike data, you should also check out Liberty Hamilton's repository at https://github.com/libertyh/ising-model.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap